[C++] C++入门第二篇 -- 引用 -- 内联函数inline -- auto+for

news/2024/2/29 3:41:24

目录

1、引用 -- &

1.1 引用的概念

1.2 引用特性

1.3 常引用 -- 权限问题

1.4 引用的使用场景

1.4.1 做参数

1.4.2 做返回值

注意

1.5 传值、传引用的效率比较

1.6 引用和指针的区别

2、内联函数

2.1 概念

转存失败重新上传取消​编辑转存失败重新上传取消​编辑2.2 特性

3、auto

3.1 auto简介

3.2 auto的使用细则

3.3 auto不能推导的场景

3.4 auto与for合用


1、引用 -- &

1.1 引用的概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间

比如:李逵,在家称为“铁牛”,江湖上人称“黑旋风”。同一个人,只不过是两个名字。

语法: 类型& 引用变量名(对象名) = 引用实体;

&是引用的符号,在C语言中&也表示取地址,还表示按位与,本质是运算符重载,运算符重载,一个符号会根据不同的场景,编译器会自己确定含义。

我们举例来看看&:

int main()
{int a = 10;int& b = a;//定义引用类型int& c = b;cout << "a = " << a << ",地址:" << &a << endl;cout << "b = " << b << ",地址:" << &b << endl;cout << "c = " << c << ",地址:" << &c << endl;return 0;
}

运行结果: 

我们根据运行结果可以知道,a,b,c 指的是同一块内存空间。

注意:引用类型必须和引用实体同种类型的。

1.2 引用特性

引用有三个特性:

1. 引用在定义时必须初始化
2. 一个变量可以有多个引用;
3. 引用一旦引用一个实体,再不能引用其他实体。

其实前两条我们理解记忆就好了:

1、引用是起别名,要有对象我们才能再去起别名,不存在对象给谁起别名;

2、一个小孩,妈妈可以叫他宝贝,爸爸可以叫他贝贝,爷爷也可以叫他狗蛋是吧,所以一个对象可以有多个别名(引用)。

我们对这三个用代码写一下看看: 

1.3 常引用 -- 权限问题

我们用代码来看:

int main()
{//1.权限放大const int x = 10;int& a = x;return 0;
}

我们来看看编译会不会出错:

这是因为,在引用中,对原变量的引用权限不能放大。

在这段代码中,x是const修饰的常变量,只能读取,不能修改。而a是int类型,针对类型来说,它是可以修改的。因此这就是权限放大,这是错误的。

我们继续往下看:

int main()
{//2.权限平移const int i = 20;const int& j = i;//3.权限缩小int z = 30;const int& y = z;return 0;
}

我们看结果:

对于权限的平移,权限的缩小都是没有问题的,由此我们可以看出:在引用中,对于权限来说,平移、缩小都是没有问题的,唯独要注意的是:权限不能放大。

特殊:

我们再往下看: 

直接能看出来,对于引用来说不能初始化为常量,这也算是权限的放大。 

改为const修饰就不会报错了。

最后看一个: 

引用的时候,不同的类型直接引用是会出错的。

1.4 引用的使用场景

1.4.1 做参数

void Swap(int& left, int& right)
{int tmp = left;left = right;right = tmp;
}

在C语言的时候,我们交换两个数我们使用指针来交换,而C++我们就可以使用引用来交换。

我们来测试一下:

1.4.2 做返回值

我们先来看一段代码:

int func()
{int n = 0;n++;return n;
}
int main()
{cout << func() << endl;return 0;
}

运行结果:

这是是一个传值返回,我们来深究传值返回的过程:

传值返回的时候会产生一个临时变量,跟传参一样,临时变量会先把n拷贝下来,然后再拷贝给函数调用,传值返回的类型其实是临时变量的类型,那么为什么要产生一个临时变量呢,直接返回n不香吗?

这是因为在函数调用的时候,功能函数会建立函数栈帧,而功能函数的每一条语句执行完后,函数栈帧会自动销毁,这时功能函数的整个函数体,包括函数体里的所有内容都随之销毁,返回的变量生命周期也就结束了。但是编译器在这里产生一个临时变量,要是小就用寄存器存储,将返回值拷贝给临时变量,再又临时变量拷贝给调用的函数,这就不会出错了。

有了上面的理解,我们再来看一段代码:

int& func()
{int n = 0;n++;return n;
}
int main()
{int& ret = func();cout << ret << endl;cout << ret << endl;return 0;
}

运行结果:

此代码的返回值是int&,而传引用是给变量起别名,而在这里返回的是别名,调用完func函数,栈帧销毁了,但是空间还在(类似于订酒店,我退房了,但是房间还在,别人还可以使用),给n起了别名之后再去打印,还是操作的n的那块空间,那块空间可能被清理的,也有可能还没有清理,如果没清理,那块空间的值还是1,如果被清理了可能就是其他值了。

注意

我们看上面的代码,在第二次打印的时候,n的值明显就不正确了,出了函数作用域,func函数被销毁了,我们再去访问那块空间的时候,就是非法访问了,这就是引用的一种野指针。

因此这里要注意:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。

1.5 传值、传引用的效率比较

我们用代码来测试一下:

#include <time.h>
struct A 
{ int a[10000]; 
};
void TestFunc1(A a) {}
void TestFunc2(A& a) {}
void TestRefAndValue()
{A a;// 以值作为函数参数size_t begin1 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc2(a);size_t end2 = clock();// 分别计算两个函数运行结束后的时间cout << "TestFunc1 time:" << end1 - begin1 << endl;cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
int main()
{TestRefAndValue();return 0;
}

运行结果:

#include <time.h>
struct A { int a[10000]; };
A a;
// 值返回
A TestFunc1() { return a; }
// 引用返回
A& TestFunc2() { return a; }
void TestReturnByRefOrValue()
{// 以值作为函数的返回值类型size_t begin1 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc1();size_t end1 = clock();// 以引用作为函数的返回值类型size_t begin2 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc2();size_t end2 = clock();// 计算两个函数运算完成之后的时间cout << "TestFunc1 time:" << end1 - begin1 << endl;cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
int main()
{TestReturnByRefOrValue();return 0;
}

运行结果:

我们看到无论是传参还是返回,传引用的效率明显要高于传值。

原因: 以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

1.6 引用和指针的区别

语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

int main()
{int a = 10;int& ra = a;ra = 20;int* pa = &a;*pa = 20;return 0;
}

我们来看引用和反汇编代码的对比:

引用和指针的不同点:

1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
2. 引用在定义时必须初始化,指针没有要求
3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体
4. 没有NULL引用,但有NULL指针
5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)
6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
7. 有多级指针,但是没有多级引用
8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
9. 引用比指针使用起来相对更安全

2、内联函数

2.1 概念

inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。

我们来看一下平常我们写的代码:

int Add(int x, int y)
{return x + y;
}
int main()
{int ret = 0;ret = Add(1, 2);return 0;
}

我们可以看到,这里是在调用函数,但是我们要是不断要用Add函数的时候,不断的调用效率会比较低,因此在C++中,我们引入了内联函数(inline)。

inline int Add(int x, int y)
{return x + y;
}
int main()
{int ret = 0;ret = Add(1, 2);return 0;
}

我们可以看到,加了inline变为内联函数后,就不再是调用了,直接用函数体替换了函数调用,不用开栈帧,可以提高效率。

看到这是不是想到,C++的内联函数像是C语言的宏。

C++中的内联函数确实和C语言的宏用途是一样的,对于短小且频繁调用的函数,C语言用宏来代替函数,C++中用内联函数。

C++是全面兼容C语言的,我们直接用宏就可以了,那为什么我们还要使用内联函数呢?

1、宏在写的时候容易出错,且没有类型的检查,还不能调试。

2、内联函数会对参数的类型进行检查,还可以调试,书写上就是正常的写功能函数,在返回值类型前加inline。

如果想要看底层是调用还是直接展开的,查看方式:
1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,以下给出vs2019的设置方式)

 

2.2 特性

1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
2. inline对于编译器而言只是一个建议,编译器会自动优化,如果内联函数内存在循环/递归的时候,编译器会自动优化忽略掉内联。(一般建议10行以内)

3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。

对于第二点我们做一下实验:

inline int Add(int x, int y)
{int sum = x + y;sum += x * y;sum += x * y;sum += x * y;sum += x * y;sum += x * y;sum += x * y;sum += x * y;sum += x * y;sum += x * y;return sum;
}
int main()
{int ret = 0;ret = Add(1, 2);return 0;
}

这里内联函数函数体一共写了十一行就算是函数调用了。

3、auto

3.1 auto简介

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量。C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

auto我们在C语言期间就接触过,C语言期间定义的局部变量默认是用auto修饰,因此我们在定义变量的时候从来不加auto,也就没人在意。但是到了C++11时期,auto有了新的身份,它可以自动推导类型。

我们来看一段代码,看看auto的自动推导类型:

int testAuto()
{return 1;
}
int main()
{int a = 0;auto b = a;auto c = 'c';auto ret = testAuto();cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;cout << typeid(ret).name() << endl;return 0;
}

运行结果: 

这段代码里面 typeid(变量名).name() 是推导变量类型的一个函数。

我们可以看到auto很智能,可以根据赋的值来推导类型。

注意:使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。

3.2 auto的使用细则

1. auto与指针和引用结合起来使用:用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&。

int main()
{int x = 10;auto a = &x;auto* b = &x;auto& c = x;cout << typeid(a).name() << endl;cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;return 0;
}

运行结果: 

2. 在同一行定义多个变量:当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。

void TestAuto()
{auto a = 1, b = 2;auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}

3.3 auto不能推导的场景

1. auto不能作为函数的参数

// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}

2. auto不能直接用来声明数组

void TestAuto()
{int a[] = {1,2,3};auto b[] = {4,5,6};
}

3.4 auto与for合用

按照C语言我们的写法,遍历数组是下面的代码

int main()
{int array[] = { 1, 2, 3, 4, 5 };for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)array[i] *= 2;for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)cout << array[i] << " ";cout << endl;return 0;
}

运行结果:


我们现在也可以使用auto这样来遍历数组:

int main()
{int array[] = { 1, 2, 3, 4, 5 };for (auto e : array)cout << e << " ";return 0;
}

运行结果:

我们这里使用的是范围 for ,for循环后的括号由冒号”:“分为两个部分:第一部分是范围内用于迭代的变量,第二部分表示迭代的范围。这里会自动判断结束的。

这里的e是取到数组里的元素,然后打印,不会影响数组元素。

如果想改变数组元素,我们可以使用auto& e,这是对数组元素起别名,直接改变数组元素,auto取到元素后会自动推导类型的。如下:

int main()
{int array[] = { 1, 2, 3, 4, 5 };for (auto& e : array)e *= 2;for (auto e : array)cout << e << " ";return 0;
}

运行结果:

我们可以看到结果,这样写就把数组元素改了。


http://www.ppmy.cn/news/981119.html

相关文章

面试题-TS(二):如何定义 TypeScript 中的变量和函数类型?

面试题-TS(二)&#xff1a;如何定义 TypeScript 中的变量和函数类型&#xff1f; 一、 变量类型的定义 在TypeScript中&#xff0c;我们可以使用冒号(:)来指定变量的类型。以下是一些常见的变量类型&#xff1a; 布尔类型&#xff08;boolean&#xff09;&#xff1a;表示tr…

【算法题】2779. 数组的最大美丽值

题目&#xff1a; 给你一个下标从 0 开始的整数数组 nums 和一个 非负 整数 k 。 在一步操作中&#xff0c;你可以执行下述指令&#xff1a; 在范围 [0, nums.length - 1] 中选择一个 此前没有选过 的下标 i 。 将 nums[i] 替换为范围 [nums[i] - k, nums[i] k] 内的任一整…

如何在电脑上查看连接过的wifi信息?

忘记wifi密码&#xff1f;想要看看wifi信息&#xff1f; 我想这篇文章可以帮到你O(∩_∩)O哈哈~。 通过网络连接中心查看 电脑上找到“网络和共享中心” 点击连接的wifi名称 点击无线属性 在安全选项中就有密码 通过电脑命令行工具查看推荐 通过winr快捷键打开电脑运…

rpc通信原理浅析

rpc通信原理浅析 rpc(remote procedure call)&#xff0c;即远程过程调用&#xff0c;广泛用于分布式或是异构环境下的通信&#xff0c;数据格式一般采取protobuf。 protobuf&#xff08;protocol buffer&#xff09;是google 的一种数据交换的格式&#xff0c;它独立于平台语…

只给用户赋予指定数据库

需要借助模块 mysqlclient -------从cmd中&#xff0c;进入mysql mysqlclient安装 pip install mysqlclient 数据库给某个用户赋予权限 # 查看当前数据库有哪些用户select user,host,password from mysql.user;# 创建luffy用户# 创建一个用户叫luffy&#xff0c;密码是…

使用EasyPoi实现Excel的按模板样式导出

1&#xff0c;横向遍历 #fe 使用#fe命令可以实现集合数据的横向拓展&#xff0c;比如模板代码是 {{#fe:maths t.score}}导出的excel里面就会显示会自当前列&#xff0c;向右拓展&#xff0c;效果可参见下面的导出文件截图 2&#xff0c;横向遍历值 v_fe 使用v_fe命令可以实现…

MATLAB 利用RANSAC对多项式进行点拟合 (32)

MATLAB 利用RANSAC对多项式进行点拟合 (32) 一、算法介绍二、函数介绍三、算法实现四、效果展示一、算法介绍 通过对给定的一小组点进行抽样并生成多项式拟合,得到多项式系数 P。返回 maxRange 中具有最多 inlier 值的拟合。如果找不到匹配,则返回空的 P。该函数使用 M 估…

Redis 缓存机制介绍

.Redis 缓存 缓存&#xff08;cache&#xff09;&#xff0c;原始意义是指访问速度比一般随机存取存储器&#xff08;RAM&#xff09;快的一种高速存储器&#xff0c;通常它不像系统主存那样使用 DRAM 技术&#xff0c;而使用昂贵但较快速的 SRAM 技术。缓存的设置是所有现代计…

ADS仿真低噪声放大器学习笔记

ADS仿真低噪声放大器 设计要求&#xff1a; 工作频率&#xff1a;2.4~2.5GHz ISM频段 噪声系数&#xff1a;NF < 0.7 增益&#xff1a;Gain > 15 输入驻波输出驻波&#xff1a;&#xff1c;1.5 这里重点是ADS操作流程 1. 安装晶体管的库文件 1、 下载ATF54143晶体管的…

[Spark] 大纲

1、Spark任务提交流程 2、SparkSQL执行流程 2.1 RBO&#xff0c;基于规则的优化 2.2 CBO&#xff0c;基于成本的优化 3、Spark性能调优 3.1 固定资源申请和动态资源分配 3.2 数据倾斜常见解决方法 3.3 小文件优化 4、Spark 3.0 4.1 动态分区裁剪(Dynamic Partition Pr…

RNN架构解析——LSTM模型

目录 LSTMLSTM内部结构图 Bi-LSTM实现 优点和缺点 LSTM LSTM内部结构图 Bi-LSTM 实现 优点和缺点

Springboot @Async 多线程获取返回值

Springboot Async 多线程获取返回值 需求背景 最近需要用到多线程, 自己维护线程池很麻烦, 正好看到Springboot集成线程池的例子, 这里自己做了个尝试和总结, 记录一下, 也分享给需要的朋友; 不考虑事务的情况下, 这个多线程实现比较简单, 主要有以下几点: 在启动类加上Enab…

TDesign 中后台系统搭建

目录 1 模板安装2 启动项目3 添加页面总结 一般如果希望开发小程序&#xff0c;是要给使用的用户提供一套中后台系统来管理数据的。现在中后台系统开源项目也比较多&#xff0c;本篇我们介绍一个腾讯开源的TDesign模板。 1 模板安装 先要在电脑里安装好nodejs&#xff0c;搜索…

开发岗智力题集合

1 1000个人做核酸&#xff0c;有一个阳性&#xff0c;怎么快速查出来&#xff08;二分法、编码法 - 二进制位&#xff09; 首先我们整理一下题意&#xff0c;这里的快速查出来是指每个人都做完一次核酸后&#xff0c;使用的最少的核酸管的数量&#xff0c;这等同于求最少的检测…

前端开发实习总结参考范文

▼前端开发实习总结篇四 读了三年的大学&#xff0c;然而大多数人对本专业的认识还是不那么透彻&#xff0c;学的东西真正能够学以致用的东西很少&#xff0c;大家都抱怨没有实践的机会&#xff0c;在很多同学心里面对于本专业还是很茫然。直到即将毕业的时候才知道我们以前学…

人机合一Linux

未来云系统成为主流&#xff0c;维护电脑这种充满时代特性的技术&#xff0c;完全不重要了。 无论是学习还是工作&#xff0c;电脑都是IT人必不可少的重要武器&#xff0c;一台好电脑除了自身配置要经得起考验&#xff0c;后期主人对它的维护也是决定它寿命的重要因素&#xff…

keep-alive结合activated,deactivated的用法

<keep-alive>是Vue的内置组件&#xff0c;能在组件切换过程中将状态保留在内存中&#xff0c;防止重复渲染DOM。 include: 字符串或正则表达式。只有匹配的组件会被缓存。exclude: 字符串或正则表达式。任何匹配的组件都不会被缓存。 import Vue from ‘vue‘ import R…

小程序新渲染引擎 Skyline 发布正式版

为了进一步提升小程序的渲染性能和体验&#xff0c;我们推出了一套新渲染引擎 Skyline&#xff0c;现在&#xff0c;跟随着基础库 3.0.0 发布 Skyline 正式版。 我们知道&#xff0c;小程序一直用 WebView 来渲染界面&#xff0c;因其有不错的兼容性和丰富的特性&#xff0c;且…

Python in VS Code 2023年7月发布|Mypy 扩展预览版与调试扩展、Pylance 本地化及其他

排版&#xff1a;Alan Wang 我们很高兴地宣布 Visual Studio Code 的 Python 和 Jupyter 扩展将于 2023 年 7 月发布&#xff01; 此版本包括以下更新&#xff1a; Mypy 扩展预览版预览版中的调试扩展Pylance 本地化使用 Pylance 的第三方库的索引持久性即将弃用 Python 3.7 支…

7.ES使用

ES多条件查询 and , or这种的 ES模糊查询 like这种的 {"wildcard": {"title.keyword": {"value": "*宣讲*"}}}说明&#xff1a; title是要匹配的关键字段名称keyword是属性&#xff0c;表示匹配的是关键字信息&#xff0c;如果不用.ke…
最新文章