(邱维声)高等代数课程笔记:基,维数与坐标

news/2024/12/6 20:14:34/

3.5 基,维数与坐标

\quad 本节,继续研究线性空间的结构。一般地,设 V V V 是数域 K K K 上的一个线性空间。

\quad 首先,我们先将“线性相关”与“线性无关”的概念由“有限”向“无限”推广。

对比其它高等代数教程,邱老师在这一节非常巧妙的将“有限维”与“无限维”统一在了一起!

定义 1. 线性空间子集的线性相关与线性无关
(1) V V V 的一个有限子集 { α 1 , α 2 , ⋯ , α s } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s}\} {α1,α2,,αs} 线性相关 : ⟺ :\Longleftrightarrow :⟺ 向量组 α 1 , α 2 , ⋯ , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性相关;
(2) V V V 的一个有限子集 { α 1 , α 2 , ⋯ , α s } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s}\} {α1,α2,,αs} 线性无关 : ⟺ :\Longleftrightarrow :⟺ 向量组 α 1 , α 2 , ⋯ , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性无关;
(3) V V V 的一个无限子集 S S S 线性相关 : ⟺ :\Longleftrightarrow :⟺ 存在 S S S 的一个有限子集线性相关;
(4) V V V 的一个无限子集 S S S 线性无关 : ⟺ :\Longleftrightarrow :⟺ S S S 的任一个有限子集都线性无关。

例 1:平面 π \pi π 上的任意两个不共面的向量可成为该平面的一个基。

定义 2. 极大线性无关集与基:设 V V V 是数域 K K K 上的一个线性空间。 V V V 的一个子集 S S S 如果满足:
(1) S S S 是线性无关的;
(2)对于 ∀ β ∈ V \ S \forall ~ \boldsymbol{\beta} \in V \backslash S  βV\S(如果还有的话),有 S ∪ { β } S \cup \{\boldsymbol{\beta}\} S{β} 线性相关,
则称 S S S V V V 的一个 极大线性无关集

\quad 可以看到,“极大线性无关集”的概念以及与“基”相近了,不过我们需要排除一些意外情况,比如 V = { 0 } V =\{\boldsymbol{0}\} V={0}.

\quad 由 前一节 的讨论,我们知道 { 0 } \{\boldsymbol{0}\} {0} 是线性相关的,因此,若 V ≠ { 0 } V \ne \{\boldsymbol{0}\} V={0},则称 V V V 的一个极大线性无关集为 V V V 的一个

\quad 如果将上述定义推广到 V = { 0 } V =\{\boldsymbol{0}\} V={0} 的情形,则需要做一些规定:空集 ϕ \phi ϕ 是线性无关的。之后再进行分析:若 V = { 0 } V =\{\boldsymbol{0}\} V={0},由于
(1) ϕ \phi ϕ 是线性无关的;
(2)对于 0 ∈ V \ ϕ \boldsymbol{0} \in V \backslash \phi 0V\ϕ,有 ϕ ∪ { 0 } = { 0 } \phi \cup \{\boldsymbol{0}\} = \{\boldsymbol{0}\} ϕ{0}={0} 线性相关,
定义 2 ϕ \phi ϕ { 0 } \{\boldsymbol{0}\} {0} 的一个极大线性无关集,此时,我们称 ϕ \phi ϕ V V V 的一个基。

  • 简单来讲,若规定“空集是线性无关的”,则线性空间的一个极大线性无关集,就是其的一个基。
  • 定义 2 是合理的,但我们一般不会采用这个定义,因为这个定义比较抽象,不太直观。

定义 3. 基:设 V V V 是数域 K K K 上的一个线性空间。 V V V 的一个子集 S S S 若满足:
(1) S S S 是线性无关的;
(2) V V V 中的任一向量可由 S S S 中的有限多个向量线性表出,
则称 S S S V V V 的一个

\quad 另外,
(1)若 S = { α 1 , α 2 , ⋯ , α r } S = \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r}\} S={α1,α2,,αr}(即 S S S 为有限集),也称向量组 α 1 , α 2 , ⋯ , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr V V V 的一个(有序)基
(2)规定: ϕ \phi ϕ 是线性无关的;
(3)规定:线性空间 { 0 } \{\boldsymbol{0}\} {0} 的一个基是 ϕ \phi ϕ

\quad 相较于定义 2,在定义 3 的基础上,只能规定"线性空间 { 0 } \{\boldsymbol{0}\} {0} 的一个基是 ϕ \phi ϕ",而由定义 2 是可以直接推出的。

\quad 现在思考一个问题:是否任一个线性空间都有基?答案是肯定的,详情请参见 高等代数——大学创新教材(下册) P 158 ∼ P 159 P_{158}\sim P_{159} P158P159

定义 4. 有限维与无限维
(1)若 V V V 有一个基是 V V V 的有限子集,则称 V V V有限维的
(2)若 V V V 有一个基是 V V V 的无限子集,则称 V V V无限维的

定理 1:若 V V V 是有限维的,则 V V V 的任意两个基所含个数相等。

证明:

\quad 一般地,设向量组 { α 1 , α 2 , ⋯ , α n } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} {α1,α2,,αn} V V V 的一个基,任取 V V V 的另一个基 S S S

(1)若 S S S 所含的向量个数 > n >n >n,则在 S S S 中至少可取 n + 1 n+1 n+1 个向量 β 1 , β 2 , ⋯ , β n + 1 \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n+1} β1,β2,,βn+1。显然,向量组 { β 1 , β 2 , ⋯ , β n + 1 } \{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n+1}\} {β1,β2,,βn+1} 可由向量组 { α 1 , α 2 , ⋯ , α s } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s}\} {α1,α2,,αs} 线性表出,由于 n + 1 > n n+1>n n+1>n,因此 β 1 , β 2 , ⋯ , β n + 1 \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n+1} β1,β2,,βn+1 线性相关,从而产生矛盾。

(2)设 S S S 中所含向量的个数 ≤ n \le n n,不妨设为 m m m。显然有

{ α 1 , α 2 , ⋯ , α n } ≅ { β 1 , β 2 , ⋯ , β m } , \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} \cong \{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{m}\}, {α1,α2,,αn}{β1,β2,,βm},

等价的线性无关的向量组所含向量的个数相等,因此 m = n m=n m=n.

#

推论:若 V V V 是无限维的,则 V V V 的任意一个基都是无限维的。

定义 5. 维数
(1)若 V V V 是有限维的,则称 V V V 的一个基所含向量的个数为 V V V维数。记作: dim ⁡ V \dim V dimV
(2)若 V V V 是无限维的,则将 V V V 的维数记作 dim ⁡ V = ∞ \dim V = \infty dimV=
(3)若 V = { 0 } V = \{\boldsymbol{0}\} V={0},则 dim ⁡ V = 0 \dim V = 0 dimV=0

命题 1:设 V V V n n n 维的,则 V V V 中任意 n + 1 n+1 n+1 个向量都线性相关。

命题 2:设 dim ⁡ V = n \dim V = n dimV=n S = { α 1 , α 2 , ⋯ , α n } S = \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} S={α1,α2,,αn} V V V 的一个基,则 V V V 中任一向量 α = a 1 α 1 + ⋯ + a n α n \boldsymbol{\alpha} = a_{1} \boldsymbol{\alpha}_{1}+\cdots + a_{n} \boldsymbol{\alpha}_{n} α=a1α1++anαn 的表出方式唯一。

定义 6. 坐标:设 dim ⁡ V = n \dim V = n dimV=n { α 1 , α 2 , ⋯ , α n } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} {α1,α2,,αn} V V V 的一个基,向量 α = a 1 α 1 + ⋯ + a n α n ∈ V \boldsymbol{\alpha} = a_{1} \boldsymbol{\alpha}_{1}+\cdots + a_{n} \boldsymbol{\alpha}_{n} \in V α=a1α1++anαnV,则称 α \boldsymbol{\alpha} α坐标 为:
( a 1 a 2 ⋮ a n ) \left( \begin{array}{c} \boldsymbol{a}_1\\ \boldsymbol{a}_2\\ \vdots\\ \boldsymbol{a}_n\\ \end{array} \right) a1a2an

命题 3:设 dim ⁡ V = n \dim V = n dimV=n,则 V V V 中任意 n n n 个线性无关的向量都是 V V V 的一个基。

命题 4:设 dim ⁡ V = n \dim V = n dimV=n,若 V V V 中任一向量可由向量组 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} α1,α2,,αn 线性表出,则集合 { α 1 , α 2 , ⋯ , α n } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} {α1,α2,,αn} V V V 的一个基。

命题 5:设 dim ⁡ V = n \dim V = n dimV=n,则 V V V 的任意一个线性无关的向量组都能扩充成 V V V 的一个基。

命题 6:设 dim ⁡ V = n \dim V = n dimV=n W W W V V V 的一个子空间,则 dim ⁡ W ≤ dim ⁡ V \dim W \le \dim V dimWdimV

命题 7:向量组 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} α1,α2,,αn 的一个极大线性无关组是 < α 1 , α 2 , ⋯ , α n > <\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}> <α1,α2,,αn> 的一个基。

命题 8:关于向量组的生成子空间,我们有:
( < α 1 , α 2 , ⋯ , α s > = < β 1 , β 2 , ⋯ , β t > ) ⟺ ( { α 1 , α 2 , ⋯ , α s } ≅ { β 1 , β 2 , ⋯ , β t } ) \left( <\boldsymbol{\alpha }_1,\boldsymbol{\alpha }_2,\cdots ,\boldsymbol{\alpha }_s>=<\boldsymbol{\beta }_1,\boldsymbol{\beta }_2,\cdots ,\boldsymbol{\beta }_t> \right) \,\,\Longleftrightarrow \left( \left\{ \boldsymbol{\alpha }_1,\boldsymbol{\alpha }_2,\cdots ,\boldsymbol{\alpha }_s \right\} \cong \left\{ \boldsymbol{\beta }_1,\boldsymbol{\beta }_2,\cdots ,\boldsymbol{\beta }_t \right\} \right) (<α1,α2,,αs>=<β1,β2,,βt>)({α1,α2,,αs}{β1,β2,,βt})


http://www.ppmy.cn/news/61107.html

相关文章

人工智能基础部分14-蒙特卡洛方法在人工智能中的应用及其Python实现

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能基础部分14-蒙特卡洛方法在人工智能中的应用及其Python实现&#xff0c;在人工智能领域&#xff0c;蒙特卡洛方法&#xff08;Monte Carlo Method, MCM&#xff09;被广泛应用于各种问题的求解。本文首先将…

华为开源自研AI框架昇思MindSpore应用案例:ResNet50迁移学习

目录 一、环境准备1.进入ModelArts官网2.使用CodeLab体验Notebook实例 二、数据准备 在实际应用场景中&#xff0c;由于训练数据集不足&#xff0c;所以很少有人会从头开始训练整个网络。普遍的做法是&#xff0c;在一个非常大的基础数据集上训练得到一个预训练模型&#xff0c…

node笔记_读文件(异步读取、流式读取)

文章目录 ⭐前言⭐ 读取文件异步读 readFile读取txt 流式读 createReadStream读取视频 ⭐ 结束 ⭐前言 大家好&#xff0c;我是yma16&#xff0c;本期分享node读取文件。 往期文章 node_windows环境变量配置 node_npm发布包 linux_配置node node_nvm安装配置 node笔记_http服务…

认识JavaBean

什么是JavaBean? JavaBean是指符合特定规范以及定义的Java类&#xff0c;通常用于封装数据&#xff0c;提供访问数据的方法和属性&#xff0c;并且可以被其他程序重用。它具有以下特点&#xff1a; 遵循特定编程规范&#xff1a;JavaBean必须要遵循JavaBean编程规范&#xff…

Android inputflinger系统分析

本文基于Android 12。 一、InputManagerService启动 SystemServer初始化InputManagerService()&#xff0c;然后调用其start()方法。 InputManagerService()构造方法中和start()分别调用了两个native方法&#xff1a; 1.1NativeImpl() 初始化 InputManagerService(Injector…

组件等比例放大——scale和zoom

scale和zoom的区别 zoom的缩放是相对于左上角的&#xff1b;而scale默认是居中缩放&#xff0c;可以通过transform-origin修改基准点zoom的缩放改变了元素占据的空间大小&#xff1b;而scale的缩放占据的原始尺寸不变&#xff0c;页面布局不会发生变化。对文字的缩放规则不一致…

Vben Admin 自学记录 —— Drawer组件的基本使用及练习(持续更新中...)

Drawer 抽屉组件 对 antv 的 drawer 组件进行封装&#xff0c;扩展拖拽&#xff0c;全屏&#xff0c;自适应高度等功能。 Drawer相关使用及概念 练习 —— 在之前table基础上&#xff0c;添加查看功能&#xff0c;点击查看按钮&#xff0c;弹出抽屉显示单条表格数据&#xf…

浏览器安全之XSS跨站脚本

基本概念 跨站脚本&#xff08;Cross-Site Scripting&#xff0c;XSS&#xff09;是一种经常出现在Web应用程序中的计算机安全漏洞&#xff0c;是由于Web应用程序对用户的输入过滤不足而产生的。 攻击者利用网站漏洞把恶意的脚本代码&#xff08;通常包括HTML代码和客户端Javas…