《智能前沿:应对ChatGPT算力挑战》

news/2024/5/18 22:23:26/ 标签: 人工智能, 服务器, gpu算力, 阿里云, 云原生, 大数据

在全球人工智能热潮中,以 ChatGPT 为代表的 AIGC 技术引发了广泛关注。人工智能和机器学习等技术对数据规模及处理速度等提出了更高要求。在数据成为主要生产要素的当下和未来,如何跟上时代的发展步伐,构建适应 AI 需求的数据中心,已成为当务之急。本文将探讨AI发展浪潮中,传统数据中心如何改进与优化配置,满足市场需求的变革。

AI应用的特点🎨

🌵几十年来,传统的云数据中心基础设施虚拟化不断发展。这种进步使得系统和应用程序能够根据需要快速启动,以满足各种用户和业务应用程序的需求。此外,它还能够支持通过商品级以太网连接的小型工作负载。尽管以太网具备广泛而全面的功能,但其性能并不高,不适合扩展到多个节点,特别是对于高性能计算的需求。🌵

 

在此基础上,为了有针对性地配置数据中心满足AI应用的需求,首先要了解AI应用的特点及要求。

1. 分布式计算🌟

为更好应对部署生成式 AI 应用程序及训练基础 AI 模型带来的持续增长的计算量需求,AI模型通常采用分布式计算。将工作负载分布在多个互连的计算节点上来加速训练过程,确保消息及时到达所有参与节点方面。此外,由于单个分布式任务的运行时间由参与速度最慢节点的运行时间决定,这使得尾部延迟(最后一条参与消息的到达时间)变得至关重要,对网络扩展及处理大量数据的能力也提出了更高要求。

2. 算力需求🌟

算力是训练大模型的底层动力源泉,是打造大模型生态的必备基础。

随着 AI 模型规模的不断扩大,对算力的需求也在急剧增长。根据 OpenAI 的数据,模型计算量的增长速度远超过硬件算力的增长速度,形成了巨大的算力缺口。这个缺口主要体现在两个方面

数据传输速度:随着模型规模的增大,训练过程中需要处理的数据量也在增大。这就对数据传输速度提出了更高的要求。传统的硬盘和网络传输速度已经无法满足大规模数据的传输需求,因此,对更快的新型存储设备和传输技术(如 NVMe、InfiniBand 等)的需求正逐步增加。
存储需求:大规模 AI 模型的训练需要大量的存储空间。以 1T 参数模型为例,使用 16bit 精度存储,仅模型参数就需要 2TB 的存储空间。此外,训练过程中产生的中间变量(如激活值、梯度、优化器状态等)也会占用大量存储。一个使用 Adam 优化器的训练过程,中间变量的数量会是模型参数量的 7 倍。这就要求训练系统具备极高的存储能力和数据处理能力。

3. 并行计算模式🌟

AI大模型在训练过程中,为提高效率,通常采用数据并行、流水线并行和张量并行等多种并行计算模式。这些并行计算模式可以在多个计算设备间进行高效的集合通信,以加快训练速度。在大规模训练集群中,设计低时延、高吞吐的集群组网方案是提升AI分布式训练效率的关键。

 

数据中心如何构建 AI 网络🚀

了解AI应用在网络拓展、传输、存储等方面提出的要求,针对性构建AI网络可从以下几个方面考虑:

1. 无损网络和 RDMA🎯

无损网络是确保数据包准确到达目的地、不丢失或损坏的最佳选择。随着GPU计算和大规模AI用例在云环境中的普及,融合以太网的RDMA(RoCE)和优先级流量控制(PFC)等无损网络实现,使得以太网成为实用的解决方案。

ADOP NVIDIA® InfiniBand 网卡配有基于融合以太网 (RoCE) 的RDMA,支持通过网络进行高速、低延迟的数据传输。它允许数据直接在远程系统的内存、GPU 和存储之间传输,而不涉及这些系统的 CPU,从而实现了更高效的数据传输。

2. 自适应路由、多路径和数据包喷涂🎯

由于AI工作负载产生少量大型数据流占用大量链路带宽。为避免这些大数据流路由到到同一链路导致的拥塞和高延迟,我们需要将自适应路由算法与ECMP结合,以实现网络数据动态负载均衡。此外,路由选择需要非常精细,以避免碰撞。但如果路由逐流完成,仍有可能发生拥塞。因此,最佳策略是采用数据包喷洒(逐个数据包路由)的方式,使数据包无序到达目的地。

3. 算力支持🎯

随着大模型参数量从百亿、千亿向万亿演进,新的人工智能产业竞争,将逐渐向算力环节聚焦。为满足急剧提升的网络带宽和高速率需求,光模块单端口的速率也发展至800G。ADOP NVIDIA InfiniBand MMA4Z00-NS兼容 800GBASE-SR8 OSFP多模光模块,专为800Gb/s 2xNDR InfiniBand系统设计,最大传输速率可达850Gbps。同时顶部配有散热片,助力AI等高速运算应用正常运行。

4. 拥塞控制🎯

在不同AI同时运行的云环境中,可能会出现网络堵塞,尤其是当多个发送方将数据传给同个目标时。这种网络拥塞不仅会导致更高的延迟和有效带宽的降低,还可能会影响到相邻租户。

这种情况下,除了传统的拥塞控制方法显式拥塞通知 (ECN) ,还需要对传输数据的网络设备(NIC 或 DPU)进行计量。ADOP NVIDIA MCX653106A-HDAT ConnectX®-6 InfiniBand/VPI网卡具有可编程拥塞控制接口,提供端到端的QoS和拥塞控制,能够更好地预测及消除拥塞。

5. 性能隔离和安全性🎯

为了提供性能隔离和防止网络不公平现象,共享数据包缓冲区起着关键作用。通用共享缓冲区为交换机上的每个端口提供相同的缓存访问,可以提供混合AI云工作负载所需的可预测性和一致的低延迟。

在多租户环境中,我们必须高度重视性能隔离与零信任架构在网络安全方面的作用。为确保静态与动态数据的安全,我们必须采取相应措施,并运用高效加密和身份验证工具强化安全防护,同时确保性能不受影响。

 

应对ChatGPT中的AI算力需求🔧

随着技术的不断进步,ChatGPT的算力需求也在不断增长。让我们探讨如何有效应对这一挑战。

一、优化算法💫

首先,优化算法是提高算力效率的关键。通过改进模型架构和训练方法,可以减少计算资源的消耗。例如,使用稀疏矩阵技术和量化编码可以显著降低模型的复杂度,从而减少对算力的需求。

二、硬件升级💫

其次,硬件的升级也是提高算力的有效途径。随着GPU和TPU等专用硬件的发展,我们可以通过更换更高性能的处理器来满足更大的算力需求。同时,采用云计算服务,可以根据需求动态分配算力资源。

三、分布式计算💫

此外,分布式计算是解决算力问题的另一个方向。通过构建分布式计算网络,可以将任务分散到多个计算节点上,实现并行处理,这样可以大幅度提高计算效率。

四、节能减排💫

在追求算力的同时,我们也不能忽视环保的重要性。开发更加节能的算法和硬件,减少碳排放,是AI发展的必然趋势。例如,优化数据中心的冷却系统和电源管理,可以有效降低能耗。

五、伦理与法规💫
最后,随着AI算力的增加,伦理和法规问题也日益凸显。我们需要确保AI的发展不会侵犯个人隐私,不会被用于不正当的目的。因此,建立相应的法律框架和伦理准则,对AI算力的使用进行合理的限制和监管,是非常必要的。



📚应对ChatGPT中的AI算力需求,需要我们在算法优化、硬件升级、分布式计算、节能减排以及伦理法规等多个方面进行综合考虑。只有这样,我们才能在确保AI技术可持续发展的同时,充分发挥其在各个领域的潜力。


 

🎓随着 ChatGPT、数字经济的蓬勃兴起,企业对资源管理、性能和用户体验的要求不断提高。为了更好地处理和分析大量的数据,为企业提供更准确、更智能的决策支持,数据中心升级转型、构建AI网络已成为必然选择。


📘希望这篇文章能够对您有所帮助!如果您有任何其他问题或需要进一步的信息,请随时告诉我。
🌟


🚗关注ADOP 了解最新的AI算力资讯!🌈


http://www.ppmy.cn/news/1434676.html

相关文章

学习c语音的自我感受

因为是自学,所以走过不少弯路。去年,受知乎“python性能弱”风潮的影响,学过go,rust。 在学习这些新语言的时候,由衷感受到,或是本身侧重方向的原因(如go侧重服务器),或是语言太新不…

使用Python Tkinter创建文件生成工具

我们将使用Python的Tkinter模块创建一个简单的文件生成工具。这个工具可以用来创建Excel、文本、Python脚本和Word文档等不同类型的文件。 1、准备工作 首先,确保你已经安装了Python和所需的第三方库:Tkinter、openpyxl和python-docx。你可以使用pip来…

SpringMVC基础篇(一)

文章目录 1.基本介绍1.特点2.SpringMVC跟SpringBoot的关系 2.快速入门1.需求分析2.图解3.环境搭建1.创建普通java工程2.添加web框架支持3.配置lib文件夹1.导入jar包2.Add as Library3.以后自动添加 4.配置tomcat1.配置上下文路径2.配置热加载 5.src下创建Spring配置文件applica…

【深度学习】DDoS-Detection-Challenge aitrans2024 入侵检测,基于机器学习(深度学习)判断网络入侵

当了次教练,做了个比赛的Stage1,https://github.com/AItransCompetition/DDoS-Detection-Challenge,得了100分。 一些记录: 1、提交的flowid不能重复,提交的是非入侵的数量和数据flowid,看check.cpp可知。 2、Stage…

开源大模型 Llama 3

开源大模型Llama 3是一个在多个领域都展现出卓越性能的大模型。下面将为您介绍Llama 3的特性和一些简单的使用案例。 一、Llama 3介绍 Llama 3在Meta自制的两个24K GPU集群上进行预训练,使用了超过15T的公开数据,其中5%为非英文数据,涵盖30多种语言。这个训练数据集是前代L…

达梦(DM)数据库管理表

达梦DM数据库管理表 管理表管理表的准则表的存储空间上限表的存储位置 创建表创建普通表指定表的聚集索引查询建表更改表删除表清空表查看表定义查看表空间使用 表是数据库中数据存储的基本单元,是对用户数据进行读和操纵的逻辑实体,表由列和行组成&…

SpringCloud系列(14)--Eureka服务发现(Discovery)

前言:在上一章节中我们说明了一些关于服务信息的配置,在本章节则介绍一些关于Discovery的知识点及其使用 1、Discovery是什么,有什么用 Discovery(服务发现)是eureka的功能和特性,有时候微服务可能需要对外…

mpu6050姿态解算与卡尔曼滤波(5)可应用于51单片机的卡尔曼滤波器

博客4中给出的滤波器状态维数为4维,测量量为3维,每次滤波需要做不少矩阵乘法和求逆运算。如果想在51单片机上实现,计算耗时会比较长。考虑应用场合可以对滤波器适当做一些简化,计算量会大大减小。 首先,陀螺和加速度计…

【论文阅读】互连网络的负载平衡路由算法 (RLB RLBth)

前言Oblivious Load Balancing 不经意路由负载平衡 1. oblivious routing 不经意/无关路由的背景知识 1. oblivious routing, adaptive routing & minimal/non-minimal routing algorithms 2. Balancing a 1-Dimensional ring: RLB and RLBth 一维 ring 的 RLB and RLBth 1…

[MoeCTF-2022]Sqlmap_boy

title:[MoeCTF 2022]Sqlmap_boy 查看网页源代码&#xff0c;得到提示 <!-- $sql select username,password from users where username".$username." && password".$password.";; --> 用万能密码绕过&#xff0c;用’"闭合 爆数据库…

C++笔记:类和对象(一)->封装

类和对象 认识类和对象 先来回忆一下C语言中的类型和变量&#xff0c;类型就像是定义了数据的规则&#xff0c;而变量则是根据这些规则来实际存储数据的容器。类是我们自己定义的一种数据类型&#xff0c;而对象则是这种数据类型的一个具体实例。类就可以理解为类型&#xff0c…

B树(B-tree)

B树(B-tree) B树(B-tree)是一种自平衡的多路查找树&#xff0c;主要用于磁盘或其他直接存取的辅助存储设备 B树能够保持数据有序&#xff0c;并允许在对数时间内完成查找、插入及删除等操作 这种数据结构常被应用在数据库和文件系统的实现上 B树的特点包括&#xff1a; B树为…

【数据库】Redis

文章目录 [toc]Redis终端操作进入Redis终端Redis服务测试切换仓库 String命令存储字符串普通存储设置存储过期时间批量存储 查询字符串查询单条批量查询 Key命令查询key查询所有根据key首字母查询判断key是否存在查询指定的key对应的value的类型 删除键值对 Hash命令存储hash查…

【ARMv9 DSU-120 系列 -- Mapping for address target groups to CHI bus master ports】

文章目录 Mapping for address target groups to CHI bus master ports映射决定过程示例CHI id bit settingMapping for address target groups to CHI bus master ports 在DSU-120(DynamIQ™共享单元-120)中,地址目标组与总线主端口之间的映射关系是通过在复位时决定哪些总…

春秋云镜 CVE-2023-51048

靶标介绍&#xff1a; S-CMS v5.0 被发现存在SQLI。 开启靶场 根据题目查找S-CMS v5.0漏洞&#xff0c;百度没有查询到&#xff0c;使用必应搜索S-CMS v5.0 查找到githubCVE-2023-51052的描述 S-CMS v5.0 was discovered to contain a SQL injection... CVE-2023-51052 Git…

阿斯达年代记三强争霸开服 游戏下载安装+账号注册教程一览

阿斯达年代记国际服是一款MMORPG手游&#xff0c;游戏支持自由交易是一款可以搬砖的游戏&#xff0c;游戏目前开放的4个职业&#xff0c;战士&#xff0c;弓箭手&#xff0c;祭司&#xff0c;斗士&#xff0c;其中战士是拉剑盾为主的职业&#xff0c;主T&#xff0c;由于这1款游…

7.Eureka注册中心

将user-service服务注册到eureka 将order-service服务注册到eureka eureka:client:service-url:defaultZone: http://localhost:10086/eureka/ <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix…

视频评价工具AVQT介绍

AVQT介绍 AVQT(Advanced Video Quality Tool)是一个用于评估压缩视频感知质量的工具。它通过模拟人类如何评价压缩视频的质量来进行工作。AVQT 是是苹果在 WWDC 21 上推出的一款评估视频感知质量的工具。AVQT可以用于计算视频的帧级和片段级得分,其中片段通常持续几秒钟。这…

OpenCV 如何实现边缘检测器

返回:OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV如何实现拉普拉斯算子的离散模拟 下一篇 :OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 目标 在本教程中&#xff0c;您将学习如何&#xff1a; 使用 OpenCV 函数…

【JAVA基础之IO】字节流、字符流以及乱码问题

&#x1f525;作者主页&#xff1a;小林同学的学习笔录 &#x1f525;mysql专栏&#xff1a;小林同学的专栏 目录 1. IO概述 1.1 什么是IO 1.2 IO的分类 1.3 字节和字符流的顶级父类 2. 字节流 2.1 一切皆为字节 2.2 字节输出流【OutputStream】 2.3 FileOutputStream类…