ChatGPT在论文写作中的应用:提升表达与逻辑的双重助力

news/2024/5/28 2:42:16/ 标签: chatgpt, 机器学习, 深度学习, 论文写作

随着人工智能技术的快速发展,其在科研领域的应用也愈发广泛。AI不仅提升了科研创新的效率,还为科研人员带来了前所未有的便利。本文将从ChatGPT深度科研应用、数据分析及机器学习、AI绘图以及高效论文撰写等方面,综述AI如何助力科研创新与效率双提升。

ChatGPT作为一种先进的自然语言处理技术,在科研领域展现出了巨大的潜力。科研人员可以利用ChatGPT进行智能问答、文献检索和知识推理,从而快速获取所需信息,提高研究效率。此外,ChatGPT还能辅助科研人员构建科研模型、提出假设,推动科研创新的深入发展。

在数据分析及机器学习方面,AI技术为科研人员提供了强大的支持。通过对海量数据进行高效处理和分析,科研人员能够发现隐藏在数据背后的规律和趋势,为科研创新提供有力支撑。同时,机器学习算法的优化也进一步提升了数据分析的准确性和效率,使得科研人员能够更快速地获得研究成果。

AI绘图技术的兴起,为科研可视化表达提供了新的可能。科研人员可以利用AI绘图工具快速生成高质量的研究图表和可视化成果,使得研究成果更加直观、易懂。这不仅提高了科研成果的传播效率,还有助于科研人员更好地与他人合作与交流。

在高效论文撰写方面,AI技术同样发挥了重要作用。通过自然语言处理和机器学习技术,AI能够辅助科研人员快速构建论文框架、生成段落内容,甚至进行语法检查和格式调整。这不仅大大缩短了论文撰写的时间,还提高了论文的质量和可读性。

综上所述,AI技术在科研领域的应用已经取得了显著的成果。未来,随着技术的不断进步和应用场景的拓展,AI将在科研创新与效率提升方面发挥更加重要的作用。

阅读全文点击: 《ChatGPT在论文写作中的应用:提升表达与逻辑的双重助力》

目录

    • 一、2024大语言模型最新进展介绍与ChatGPT4基础入门
    • 二、ChatGPT4 提示词使用方法与技巧
    • 三、ChatGPT4助力日常生活、学习与工作
    • 四、ChatGPT4助力信息检索、总结分析、论文写作与投稿
    • 五、ChatGPT4助力Python编程入门、科学计算、数据可视化、数据预处理
    • 六、ChatGPT4助力机器学习建模
    • 七、ChatGPT 4助力机器学习模型优化:变量降维与特征选择
    • 八、ChatGPT 4助力卷积神经网络建模
    • 九、ChatGPT 4助力迁移学习建模
    • 十、ChatGPT 4助力生成式对抗网络建模
    • 十一、ChatGPT 4助力RNN、LSTM建模
    • 十二、ChatGPT 4助力YOLO目标检测建模
    • 十三、ChatGPT 4助力自编码器建模
    • 十四、ChatGPT4助力机器学习深度学习建模的行业应用
    • 十五、ChatGPT 4 助力深度学习模型可解释性与可视化方法
    • 十六、ChatGPT 4助力AI绘图技术
    • 十七、GPT 4 API接口调用与完整项目开发

一、2024大语言模型最新进展介绍与ChatGPT4基础入门

1、2024 AIGC技术最新进展介绍
2、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)
3、(实操演练)ChatGPT对话初体验(注册与充值、购买方法)
4、(实操演练)GPT-4与GPT-3.5的区别
5、(实操演练)GPT-4与国内外其他大语言模型(Claude、谷歌Gemini、百度文心一言、科大讯飞星火、阿里巴巴通义千问、月之暗面Kimi等)的区别
6、(实操演练)ChatGPT科研必备GPTs(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)
7、(实操演练)定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)
8、(实操演练)GPT Store简介与使用(信息检索与快速整理、论文撰写、论文翻译与润色、代码编写等)
9、案例演示与实操练习

二、ChatGPT4 提示词使用方法与技巧

1、(实操演练)ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)
2、(实操演练)常用的ChatGPT提示词模板
3、(实操演练)基于模板的ChatGPT提示词优化
4、(实操演练)利用ChatGPT4 及插件优化提示词
5、(实操演练)通过promptperfect.jina.ai优化提示词
6、(实操演练)利用ChatGPT4 及插件生成提示词
7、(实操演练)ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)
8、(实操演练)控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)
9、(实操演练)利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用
10、(实操演练)利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行
11、案例演示与实操练习

三、ChatGPT4助力日常生活、学习与工作

1、(实操演练)ChatGPT4助力中小学生功课辅导(写作文、作文批改、求解数学题、练习英语听说读写、物理计算、化学计算等)
2、(实操演练)ChatGPT4助力文案撰写与润色修改
3、(实操演练)ChatGPT4助力家庭健康管理(化验单结果解读、就诊咨询与初步诊断、常见慢病管理、日常营养膳食建议等)
4、(实操演练)ChatGPT4助力大学生求职与就业(撰写简历、模拟面试、职业规划等)
5、(实操演练)ChatGPT4助力商业工作(行业竞品检索与分析、产品创意设计与建议、推广营销策略与方案制定、撰写合同)
6、(实操演练)利用ChatGPT4 创建精美的思维导图
7、(实操演练)利用ChatGPT4 生成流程图、甘特图
8、(实操演练)利用ChatGPT4 制作PPT
9、(实操演练)利用ChatGPT4自动创建视频
10、(实操演练)ChatGPT4辅助教师高效备课(苏格拉底式教学、为不同专业学生生成不同的教学内容、围绕知识点生成不同难度的题目检测学生的学习效果等)
11、(实操演练)ChatGPT4辅助学生高效学习(利用插件生成个性化学习计划)
12、案例演示与实操练习

四、ChatGPT4助力信息检索、总结分析、论文写作与投稿

1、(实操演练)传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)
2、(实操演练)利用ChatGPT4 实现联网检索文献
3、(实操演练)利用ChatGPT4阅读与总结分析学术论文内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)
4、(实操演练)利用ChatGPT4 总结Youtube视频内容
5、(实操演练)利用ChatGPT4完成学术论文的选题设计与优化
6、(实操演练)利用ChatGPT4自动生成论文的总体框架、论文摘要、前言介绍、文献综述、完整长篇论文等
7、(实操演练)利用ChatGPT4完成论文翻译(指定翻译角色和翻译领域、提供背景提示)
8、(实操演练)利用ChatGPT4实现论文语法校正
9、(实操演练)利用ChatGPT4完成段落结构及句子逻辑润色
10、(实操演练)利用ChatGPT4完成论文降重
11、(实操演练)利用ChatGPT4完成论文评审意见的撰写与回复
12、案例演示与实操练习

五、ChatGPT4助力Python编程入门、科学计算、数据可视化、数据预处理

1、(实操演练)Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello World;第三方模块的安装与使用;Python 2.x与Python 3.x对比)
2、(实操演练)Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)
3、(实操演练)Python流程控制(条件判断;for循环;while循环;break和continue)
4、(实操演练)Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)
5、(实操演练)Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套;折线图、柱状图、饼图、地图等各种图形的绘制)
6、(实操演练)Seaborn、Bokeh、Pyecharts等高级绘图库的安装与使用(动态交互图的绘制、开发大数据可视化页面等)
7、(实操演练)科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)
8、(实操演练)利用ChatGPT4上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)
9、(实操演练)利用ChatGPT4 爬取第三方网站数据
10、(实操演练)利用ChatGPT4 实现常见文件格式之间的转换
11、(实操演练)利用ChatGPT4 实现图像处理(图像缩放、旋转、裁剪、去噪与去模糊)
12、(实操演练)利用ChatGPT4 实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)
13、(实操演练)常用的数据预处理方法(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)
14、(实操演练)融合ChatGPT 4与Python的数据预处理代码自动生成与运行
15、(实操演练)利用ChatGPT4实现数据统计分析与可视化(自动生成统计图表)
16、(实操演练)利用ChatGPT4 实现代码逐行讲解
17、(实操演练)利用ChatGPT4 实现代码Bug调试与自动修改
18、案例演示与实操练习

六、ChatGPT4助力机器学习建模

1、BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)
2、(实操演练)BP神经网络的Python代码实现(划分训练集和测试集、数据归一化)
3、(实操演练)BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)
4、(实操演练)值得研究的若干问题(欠拟合与过拟合、评价指标选择、样本不平衡等)
5、(实操演练)前向型神经网络中的ChatGPT提示词库讲解
6、(实操演练)利用ChatGPT4实现BP神经网络、极限学习机模型的代码自动生成与运行
7、KNN分类模型(KNN算法的核心思想、距离度量方式的选择、K值的选取)
8、朴素贝叶斯分类模型(伯努利朴素贝叶斯BernoulliNB、类朴素贝叶斯CategoricalNB、高斯朴素贝叶斯besfGaussianNB、多项式朴素贝叶斯MultinomialNB、补充朴素贝叶斯ComplementNB)
9、SVM的工作原理(核函数的作用是什么?什么是支持向量?
10、SVM扩展知识(如何解决多分类问题?)
11、(实操演练)KNN、贝叶斯分类与SVM中的ChatGPT提示词库讲解
12、(实操演练)利用ChatGPT4实现KNN、贝叶斯分类、SVM模型的代码自动生成与运行
13、决策树的工作原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?
14、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”的本质是什么?怎样可视化、解读随机森林的结果?)
15、Bagging与Boosting的区别与联系
16、AdaBoost vs. Gradient Boosting的工作原理
17、(实操演练)常用的GBDT算法框架(XGBoost、LightGBM)
18、(实操演练)决策树、随机森林、XGBoost、LightGBM中的ChatGPT提示词库讲解
19、(实操演练)利用ChatGPT4实现决策树、随机森林、XGBoost、LightGBM模型的代码自动生成与运行
20、案例演示与实操练习

七、ChatGPT 4助力机器学习模型优化:变量降维与特征选择

1、主成分分析(PCA)的基本原理
2、偏最小二乘(PLS)的基本原理
3、(实操演练)常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)
4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)
5、(实操演练)PCA、PLS、特征选择、群优化算法的ChatGPT提示词库讲解
6、(实操演练)利用ChatGPT4 及插件实现变量降维与特征选择算法的代码自动生成与运行
7、案例演示与实操练习

八、ChatGPT 4助力卷积神经网络建模

1、深度学习简介(深度学习大事记、深度学习与传统机器学习的区别与联系)
2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)
3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系
4、(实操演练)利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)
5、(实操演练)卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)
6、(实操演练)卷积神经网络中的ChatGPT提示词库讲解
7、(实操演练)利用ChatGPT4 及插件实现卷积神经网络模型的代码自动生成与运行
(1)CNN预训练模型实现物体识别;
(2)利用卷积神经网络抽取抽象特征;
(3)自定义卷积神经网络拓扑结构
8、案例演示与实操练习

九、ChatGPT 4助力迁移学习建模

1、迁移学习算法的基本原理(为什么需要迁移学习?迁移学习的基本思想是什么?)
2、(实操演练)基于深度神经网络模型的迁移学习算法
3、(实操演练)迁移学习中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4及插件实现迁移学习模型的代码自动生成与运行
5、实操练习

十、ChatGPT 4助力生成式对抗网络建模

1、生成式对抗网络GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?GAN给我们带来的启示)
2、GAN的基本原理及GAN进化史
3、(实操演练)生成式对抗网络中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4 及插件实现生成式对抗网络模型的代码自动生成与运行
5、实操练习

十一、ChatGPT 4助力RNN、LSTM建模

1、循环神经网络RNN的基本工作原理
2、长短时记忆网络LSTM的基本工作原理
3、(实操演练)RNN与LSTM中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4 及插件实现RNN、LSTM模型的代码自动生成与运行
5、案例演示与实操练习

十二、ChatGPT 4助力YOLO目标检测建模

1、什么是目标检测?目标检测与目标识别的区别与联系
2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别
3、(实操演练)YOLO模型中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4 及插件实现YOLO目标检测模型的代码自动生成与运行
(1)利用预训练好的YOLO模型实现目标检测(图像检测、视频检测、摄像头实时检测);
(2)数据标注演示(LabelImage使用方法介绍);
(3)训练自己的目标检测数据集
5、案例演示与实操练习

十三、ChatGPT 4助力自编码器建模

1、什么是自编码器(Auto-Encoder, AE)?
2、经典的几种自编码器模型原理介绍(AE、Denoising AE, Masked AE)
3、(实操演练)自编码器模型中的ChatGPT提示词库讲解
4、(实操演练)利用ChatGPT4 及插件实现自编码器模型的代码自动生成与运行
(1)基于自编码器的噪声去除;
(2)基于自编码器的手写数字特征提取与重构;
5、案例演示与实操练习

十四、ChatGPT4助力机器学习深度学习建模的行业应用

1、(实操演练)利用ChatGPT4实现近红外光谱分析模型的建立、代码自动生成与运行
2、(实操演练)利用ChatGPT4实现生物医学信号(时间序列、图像、视频数据)分类识别与回归拟合模型的建立、代码自动生成与运行
3、(实操演练)利用ChatGPT4实现遥感图像目标检测、地物分类及语义分割模型的建立、代码自动生成与运行
4、(实操演练)利用ChatGPT4实现大气污染物预测模型的建立、代码自动生成与运行
5、(实操演练)利用ChatGPT4实现自然语言处理模型的建立、代码自动生成与运行
6、案例演示与实操练习

十五、ChatGPT 4 助力深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?
2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解
4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征
5、(实操演练)深度学习模型可解释性与可视化中的ChatGPT提示词库讲解
6、(实操演练)利用ChatGPT4 及插件实现深度学习模型可视化的代码自动生成与运行
7、案例演示与实操练习

十六、ChatGPT 4助力AI绘图技术

1、生成式模型简介(生成式对抗网络、变分自编码器、扩散模型等)
2、(实操演练)利用ChatGPT4 DALL.E 3生成图像(下载图像、3种不同分辨率、修改图像)
3、(实操演练)ChatGPT4 DALL.E 3常用的提示词库(广告海报、Logo、3D模型、插画、产品包装、烹饪演示、产品外观设计、UI设计、吉祥物设计等)
4、(实操演练)ChatGPT4 DALL.E 3中的多种视图(正视图、后视图、侧视图、四分之三视图、鸟瞰视图、全景视图、第一人称视角、分割视图、截面视图等)
5、(实操演练)ChatGPT4 DALL.E 3中的多种光效(电致发光、化学发光、生物荧光、极光闪耀、全息光等)
6、(实操演练)ChatGPT4 DALL.E 3格子布局与角色一致性的实现
7、(实操演练)ChatGPT4 DALL.E 3生成动图GIF
8、(实操演练)Midjourney工具使用讲解
9、(实操演练)Stable Diffusion工具使用讲解
10、案例演示与实操练习

十七、GPT 4 API接口调用与完整项目开发

1、(实操演练)GPT模型API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)
2、(实操演练)利用GPT4实现完整项目开发
(1)聊天机器人的开发
(2)利用GPT API和Text Embedding生成文本的特征向量
(3)构建基于多模态(语音、文本、图像)的阿尔茨海默病早期筛查程序
3、案例演示与实操练习


http://www.ppmy.cn/news/1424626.html

相关文章

区块链的应用场景及优势

区块链技术具有广泛的应用场景和众多的优势。 金融服务:区块链技术可以改善金融服务的效率与安全性。通过使用分布式账本,可以实现更快捷的支付和结算系统,减少交易的中介环节和成本。区块链还可以提供去中心化的借贷、投资和众筹平台&#x…

udemy视频教程下载:AI和ChatGPT提示工程精通指南

欢迎来到 ChatGPT 大师班! 这个 ChatGPT 大师班:AI 和提示工程指南是您通往 AI 未来的全通道通行证。 以下是您的学习旅程: 理解和掌握 ChatGPT:您将深入了解 AI 和语言模型,重点是 ChatGPT。我们设计了这个部分&am…

3d视图模型乱了怎么调?---模大狮模型网

在进行3D建模时,有时候您可能会遇到视图模型混乱的情况。这可能是由于模型结构问题、导入导出错误或编辑操作不当等原因造成的。混乱的模型不仅影响工作效率,还可能导致渲染结果不理想。本文将介绍六种有效的方法来调整混乱的3D视图模型,帮助…

华为OD-C卷-开源项目热榜[100分]Python3-100%

题目描述 某个开源社区希望将最近热度比较高的开源项目出一个榜单,推荐给社区里面的开发者。 对于每个开源项目,开发者可以进行关注(watch)、收藏(star)、fork、提issue、提交合并请求(MR)等。 数据库里面统计了每个开源项目关注、收藏、fork、issue、MR的数量,开源…

基于springboot实现车辆管理系统设计项目【项目源码+论文说明】计算机毕业设计

基于springboot实现车辆管理系统演示 摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了车辆管理系统的开发全过程。通过分析车辆管理系统管理的不足,创建了一个计算机管理车辆管理系统的方案。文章介…

Elasticsearch克隆索引

我所使用的Elasticsearch的版本是基于7.17.7。 需求是将某个ES的索引进行克隆。例如我要将索引test_0419_1克隆一份新的索引test_0419_2。步骤如下: 首先将源索引进行修改PUT /test_0419_1/_block/write,即禁止对这个索引进行写数据操作。然后执行克隆…

中断的设备树修改及上机实验(按键驱动)流程

写在前面的话:对于 GPIO 按键,我们并不需要去写驱动程序,使用内核自带的驱动程序 drivers/input/keyboard/gpio_keys.c 就可以,然后你需要做的只是修改设备树指定引脚及键值。 根据驱动文件中的platform_driver中的.of_match_tabl…

【uniapp】request请求函数封装,token、成功、失败等

1、封装http.ts //utils--->http.ts/*** 添加拦截器* 拦截request请求* 拦截uploadFile文件上传** TODO* 1、非http开头需要拼接地址* 2、请求超时* 3、添加小程序端请求头标识* 4、添加token请求头标识*/ import { useMemberStore } from /stores/index const member…

yolov8目标检测 部署瑞芯微rk3588记录

1. 前置条件 本地电脑系统,ubuntu20.04 训练代码: 训练代码下载的ultralytics官方代码 SHA:6a2fddfb46aea45dd26cb060157d22cf14cd8c64 训练代码仅做数据修改,类别修改,代码结构未做任何修改 需要准备的代码&#…

【网站项目】驾校报名小程序

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

华为校园公开课走入上海交大,鸿蒙成为专业核心课程

4月12日,华为校园公开课在中国上海交通大学成功举办,吸引了来自计算机等相关专业的150余名学生参加。据了解,由吴帆、陈贵海、过敏意、吴晨涛、刘生钟等教授在中国上海交通大学面向计算机系本科生开设的《操作系统》课程,是该系学…

Day04 - React 第四天

学习react的第四天&#xff0c;持续更新中 关注不迷路&#xff01;&#xff01;&#xff01; 组件三大核心之——Ref ref多种形式 字符串形式 回调形式 createRef 字符串形式 class Perosn extends React.Component {render() {return (<div><input ref"ipnp…

R语言影像批量镶嵌与裁剪——mosaic

你有中国不同省份的影像&#xff0c;想要拼接镶嵌成完整的中国影像 镶嵌一 library("raster") library("sp") library("rgdal") library("rgeos") library("…

Django中间件路由映射自动加/斜杠问题原因及分析

输入 http://127.0.0.1:8000/main/index/ 输入 http://127.0.0.1:8000/main/index 路由定义情况 urlpatterns [path("index/", views.index) ]可以发现我在输入URL的index路由时&#xff0c;如果没有和Django定义的路由匹配规则一样的话&#xff0c;浏览器自…

【机器学习】数据变换---小波变换特征提取及应用案列介绍

引言 在机器学习领域&#xff0c;数据变换是一种常见且重要的预处理步骤。通过对原始数据进行变换&#xff0c;我们可以提取出更有意义的特征&#xff0c;提高模型的性能。在众多数据变换方法中&#xff0c;小波变换是一种非常有效的方法&#xff0c;尤其适用于处理非平稳信号和…

(十六)call、apply、bind介绍、区别和实现

函数中的this指向&#xff1a; 函数中的this指向是在函数被调用的时候确定的&#xff0c;也就是执行上下文被创建时确定的。在一个执行上下文中&#xff0c;this由调用者提供&#xff0c;由调用函数的方式来决定。 类数组对象arguments&#xff1a; arguments只在函数&#…

Adobe Premiere Pro将加入AI生成式功能,以提高视频编辑的效率;OpenAI宣布在东京设立亚洲首个办事处

&#x1f989; AI新闻 &#x1f680; Adobe Premiere Pro将加入AI生成式功能&#xff0c;以提高视频编辑的效率 摘要&#xff1a;Adobe宣布&#xff0c;将为Premiere Pro引入由生成式AI驱动的新功能&#xff0c;以提高视频编辑的效率。这些功能包括“生成扩展”&#xff0c;能…

ArrayList,Vector,LinkedList内存解析

1.ArrayList (1). 特点 : 实现了List接口&#xff0c;存储有序的&#xff0c;可重复的数据.底层使用Object[]数组存储.线程不安全.(底层方法未用synchronized修饰.) (2). 版本解析 : <i> : JDK7版本 ArrayList<String> list &#xff1d;new ArrayList<&…

OV通配符证书:安全、便捷的网络认证新选择

OV通配符证书&#xff0c;即组织验证型通配符证书&#xff0c;其最大特点在于其通配符功能。这意味着&#xff0c;一个OV通配符证书可以覆盖同一主域名下的多个子域名&#xff0c;大大简化了证书管理和维护的复杂性。无论是大型企业还是个人网站&#xff0c;都可以通过OV通配符…

服务器上部署GPU版的milvus向量数据库

1、安装docker compose 我们可以从 Github 上下载它的二进制包来使用&#xff0c;最新发行的版本地址&#xff1a; https://github.com/docker/compose/releases sudo curl -L "https://github.com/docker/compose/releases/download/v2.6.0/docker-compose-$(uname -s)…