(Matalb时序预测)WOA-BP鲸鱼算法优化BP神经网络的多维时序回归预测

news/2025/1/20 8:21:12/

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

 二、实际运行效果:

三、部分代码:

四、完整代码+数据+说明手册:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matalb平台编译,将WOA(鲸鱼算法)与BP神经网络结合,进行数据回归预测

  • 输入训练的数据包含8个特征,1个响应值,即通过8个输入值预测1个输出值(多变量时序预测)

  • 归一WOA算法优化BP神经网络的初始权重、初始偏差等参数,记录下最优的网络参数

  • 训练BP网络进行时序回归预测,将优化前后的网络预测效果进行对比,突出优化的重要性

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

 二、实际运行效果:

三、部分代码:

clc;
clear;
warning off;
%% 导入数据
Data = table2array(readtable("数据集.xlsx"));
% 本例数据集中包含:
% 1. 总共472个样本(每一行表示一个样本)
% 2. 每个样本8个特征值(即前8列每一列表示样本的一个特征,即输入的变量)
% 3. 每个样本1个响应值(第9列为表示样本的响应值,即被预测的变量)
​
%% 划分训练集和测试集
InPut_num = 1:1:8; % 输入特征个数,数据表格中前8列为输入值,因此设置为1:1:8,若前5个为输入则设置为1:1:5
OutPut_num = 9; % 输出响应个数,本例仅一个响应值,为数据表格中第9个,若多个响应值参照上行数据格式设置为x:1:y
​
% 选取前376个样本作为训练集,后96个样本作为测试集,即(1:376),和(377:end)
Train_InPut = Data(1:376,InPut_num); % 训练输入
Train_OutPut = Data(1:376,OutPut_num); % 训练输出
Test_InPut = Data(377:end,InPut_num); % 测试输入
Test_OutPut = Data(377:end,OutPut_num); % 测试输出
​
%% 数据归一化
% 将数据归一化到0-1之间
Temp = [Train_OutPut;Test_OutPut];
[~, Ps] = mapminmax(Temp',0,1); 
% 归一化训练输入值
Sc = size(Train_InPut);
Temp = reshape(Train_InPut,[1,Sc(1)*Sc(2)]);
Temp = mapminmax('apply',Temp,Ps);
Train_InPut = reshape(Temp,[Sc(1),Sc(2)])';
% 归一化测试输入值
Sc = size(Test_InPut);
Temp = reshape(Test_InPut,[1,Sc(1)*Sc(2)]);
Temp = mapminmax('apply',Temp,Ps);
Test_InPut = reshape(Temp,[Sc(1),Sc(2)])';
% 归一化训练输出值
Train_OutPut = mapminmax('apply',Train_OutPut',Ps);
% 归一化测试输出值
Test_OutPut = mapminmax('apply',Test_OutPut',Ps);

四、完整代码+数据+说明手册:


http://www.ppmy.cn/news/1220904.html

相关文章

转行学习Java编程能学会吗?那些转行的人后来都怎么样了?

转行学习Java编程能学会吗?那些转行的人后来都怎么样了? 现在转行java编程的人群,就像考公考研的大军-样,看起来表面上是一个庞大的群体,但实际上 就跟考公考研的群体-样,其中有1/3的属于无准备,裸考就是陪跑的炮灰&#xff0c…

【广州华锐互动】AR技术为气象站远程监控及在线指导维修提供极大便利

随着科技的不断发展,人类对于自然环境的理解和掌控能力也在不断提升。其中,AR(增强现实)技术的应用,为气象监控带来了革命性的变化。AR远程气象监测,就是将AR技术与气象监控相结合,通过虚拟与现…

【T690 之十一】基于方寸EVB2开发板,结合 Eclipse+gdb+gdbserver 调试 CCAT 的流程总结

目录 1. 准备工作1.1 Eclipse1.2 工程编译1.3 烧写固件 2. 创建工程2.1 搭建调试工程2.2 配置Dbug调试信息 3. 调试4. 手动调试过程4. 总结 备注: 1,假设您已对方寸微电子的T690系列芯片的使用方式都有了一定的了解,可以根据此文的配置进行Li…

Fortran捕捉浮点数非法运算

Fortran捕捉浮点数非法运算 调试相当老的Fortran程序,有NaN输出,想在有NaN运算的地方引起异常让程序立即core dump。测试显示ifort明显比gfortran功能好很多。 代码片段 program testuse,intrinsic::&&ieee_arithmetic,only:ieee_value,ieee_quiet_nan,ieee_signalin…

如何基于OpenCV和Sklearn算法库开展机器学习算法研究

大家在做机器学习或深度学习研究过程中,不可避免都会涉及到对各种算法的研究使用,目前比较有名的机器学习算法库主要有OpenCV和Scikit-learn(简称Sklearn),二者都支持各种机器学习算法,主要有监督学习、无监…

xss 漏洞

1、XSS类型 XSS攻击大致上分为3类: 反射型xss,DOM型xss,存储型xss。前两类为非持久性xss,后者为持久型xss。 1.1 非持久型xss: 1)反射型 XSS 攻击相对于访问者而言是一次性的,具体表现在恶意…

微信小程序相机相册授权后,需要重启客户端才能正常调用相机,无法调起窗口选择图片,无反应解决方案

最近微信小程序很多功能突然不能使用,本篇针对无法调起相册进行说明 解决方案 检查小程序隐私协议是否配置,操作步骤这里不在详细说明,点击教程按照上面的教程,找到入口后点击完善或者更新 选择选中的照片或视频这个权限要申请 之…

Elasticsearch 中 term和 query 哪个更精确,有什么区别

1.Elasticsearch 中 term和 query 哪个更精确,有什么区别 在Elasticsearch中,term 和 query 是两个不同的概念,用于搜索和过滤数据。 Term(词项): term 是一种用于精确匹配字段值的查询。它会精确匹配指定字段的确切…