PKU 概率论+数理统计 期中考复习总结

news/2023/12/2 9:17:03

这里写目录标题

  • 计算条件概率
  • 计算概率(放回与不放回)
  • 生成随机数算法
  • Uniformity (test of frequency)
    • 1.Chi-Square test
    • 2.Kolmogorov-Sminov test
  • Independence (test of autocorrelation)
    • Runs test
  • Acceptance-rejection method
  • Empirical distribution 经验分布
    • Ungrouped data
      • condition
      • method
      • construction method
      • 生成U去寻找x
    • grouped data
      • condition
      • construction method
      • example
      • How about discrete empirical distribution?
      • 经验分布的优点与缺点
  • Maximum Likelihood Estimator 最大似然估计

计算条件概率

【作业题】
Suppose that Die-Hardly-Ever battery has an exponential time-to-failure
distribution with a mean of 48 months. At 60 months, the battery is still operating.

  1. What is the probability that this battery is going to die in the next 12 months?
  2. What is the probability that the battery dies in an odd year of its life?
  3. If the battery is operating at 60 months, compute the expected additional months of life.

【重点】条件概率+无记忆性
P ( x > s + t ∣ x > t ) = P ( x > s ) P(x>s+t|x>t)=P(x>s) P(x>s+tx>t)=P(x>s)

计算概率(放回与不放回)

Suppose that a man has k keys, one of which will open a door. Compute
the expected number of keys required to open the door for the following two cases:
a. The keys are tried one at a time without replacement.(不放回)
b. The keys are tried one at time with replacement.(放回)
在这里插入图片描述

生成随机数算法

在这里插入图片描述【作业题】可能考察是否full period

Uniformity (test of frequency)

检验样本是否服从均匀分布

对前提进行假设
F r e q u e n c y Frequency Frequency
H 0 : R i ′ s U ( 0 , 1 ) H_0:R_i's~U(0,1) H0:Ris U(0,1)
H 1 : R i ′ s n o t U ( 0 , 1 ) H_1:R_i's not U(0,1) H1:RisnotU(0,1)

在测试前要说明清楚,显著性水平
α = P ( t y p e o n e e r r o r ) = p ( r e j e c t H 0 ∣ H 0 i s t r u e ) \alpha=P(type\ one\ error)=p(reject\ H_0|H_0 is\ true) α=P(type one error)=p(reject H0H0is true)

1.Chi-Square test

  • 卡方检验的期望值 E i E_i Ei要求 E i ≥ 5 E_i≥5 Ei5【这个是为了确保近似分布是合理的】

检验是否服从 U ( 0 , 1 ) U(0, 1) U(0,1)如下,

  1. 将[0,1]分成k个等长子区间(对应Reminder的Equal probability)
  2. 计算 O j O_j Oj,其为样本数据 R i R_i Ri落在子区间 ( j − 1 k , j k ] (\frac{j-1}{k},\frac{j}{k}] (kj1,kj]的频次
  3. E j = E ( O j ) = n k E_j=E(O_j)=\frac{n}{k} Ej=E(Oj)=kn观测值在j区间的期望
  4. 计算卡方 X 0 2 = ∑ j = 1 k ( O j − E j ) 2 E j {X_0}^2=\sum_{j=1}^{k}{\frac{(O_j-E_j)^2}{E_j}} X02=j=1kEj(OjEj)2
  5. Reject Ho if X 0 2 > X k − 1 , α 2 {X_0}^2>X_{k-1,\alpha}^2 X02>Xk1,α2

在这里插入图片描述

2.Kolmogorov-Sminov test

流程如下,

  1. Rank R ( 1 ) ≤ R ( 2 ) ≤ . . . ≤ R ( N ) R_{(1)}≤R_{(2)}≤...≤R_{(N)} R(1)R(2)...R(N)
  2. compute D + = max ⁡ 1 ≤ i ≤ N { i N − R ( i ) } D^+=\max_{1≤i≤N}\{\frac{i}{N}-R_{(i)}\} D+=1iNmax{NiR(i)}
    D − = max ⁡ 1 ≤ i ≤ N { R ( i ) − i − 1 N } D^-=\max_{1≤i≤N}\{R_{(i)}-\frac{i-1}{N}\} D=1iNmax{R(i)Ni1}
  3. compute D = m a x ( D + , D − ) D=max(D^+, D^-) D=max(D+,D)
  4. 拒绝 H 0 H_0 H0 if D > D α ( N ) D>D_{\alpha}(N) D>Dα(N)

Independence (test of autocorrelation)

Runs test

Acceptance-rejection method

This method uses an auxiliary function t(x) that is everywhere ≥ the density f(x) of the RV X we want to simulate
接受-拒绝采样,这个方法使用一个辅助函数 t ( x ) t(x) t(x) t ( x ) t(x) t(x)函数满足处处 t ( x ) ≥ f ( x ) t(x)≥f(x) t(x)f(x) f ( x ) f(x) f(x)是随机变量X的概率密度函数,X就是我们想要进行模拟的随机变量。

显然,处处 t ( x ) ≥ 0 t(x)≥0 t(x)0

引入 t ( x ) t(x) t(x)去求解 c c c

不妨,令 r ( x ) = t ( x ) c r(x)=\frac{t(x)}{c} r(x)=ct(x),其一定为概率密度

我们必须选择 t t t,以此能更轻松的从 r ( x ) r(x) r(x)概率密度函数中采样。

method

  1. 从概率密度r(x)中产生Y
  2. 产生均匀分布U(0, 1)变量U,其独立于Y
  3. 这意味着我们必须使用其他的随机变量
  4. U ≤ f ( Y ) t ( Y ) U≤\frac{f(Y)}{t(Y)} Ut(Y)f(Y)时,则令 X = Y X=Y X=Y,否则就回到第一步重新产生Y。

例题 Problem 7: Give an algorithm for generating a standard normal random variable X ∼ N(0,1).
(Hint: if we can generate from the absolute value |X|, then by symmetry we can obtain X by independently generating a rv U (for sign) that is ±1 with probability 1/2 and setting X = U|X|.)

方法1:建议函数使用指数分布

(1)前提准备
首先,根据已知分布的概率密度函数f(x),产生服从此分布的样本X

f ( x ) = 1 2 π e − x 2 2 ( − ∞ < x < + ∞ ) f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} (-\infty<x<+\infty) f(x)=2π 1e2x2(<x<+)

但根据题目提示,我们仅能产生|X|,不过同理,不妨设随机变量Z, Z = ∣ X ∣ Z=|X| Z=X,由X的概率密度函数我们可以知道Z的概率密度函数
f Z ( z ) = 2 2 Π e − z 2 2 ( z ≥ 0 ) f_Z(z)=\frac{2}{\sqrt{2Π}}e^{-\frac{z^2}{2}} (z≥0) fZ(z)= 2e2z2(z0)
此时再找一个建议函数(辅助函数),即随机变量Y,其服从指数分布,故我们可得其概率密度函数
f Y ( y ) = λ e − λ y ( y > 0 ) f_Y(y)=\lambda e^{-\lambda y} (y>0) fY(y)=λeλy(y>0)
(2)我们首先得确定建议函数的参数 λ \lambda λ与Acceptance-rejection method的参数c(在Acceptance-rejection method算法中我们希望c能接近1)

c ∗ g ( x ) ≥ f ( x ) c*g(x)≥f(x) cg(x)f(x),g(x)为建议函数

c f Y ( u ) f Z ( u ) = c λ e − λ u 2 2 π e − u 2 2 = c λ 2 π 2 e 1 2 ( u − λ ) 2 − λ 2 2 \frac{cf_Y(u)}{f_Z(u)}=\frac{c\lambda e^{-\lambda u}} {\frac{2}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}}= \frac{c\lambda\sqrt{2\pi}}{2}e^{\frac{1}{2}(u-\lambda)^2-\frac{\lambda^2}{2}} fZ(u)cfY(u)=2π 2e2u2cλeλu=2cλ2π e21(uλ)22λ2
易得
c λ 2 π 2 e 1 2 ( u − λ ) 2 − λ 2 2 ≥ c λ 2 π 2 e − λ 2 2 \frac{c\lambda\sqrt{2\pi}}{2}e^{\frac{1}{2}(u-\lambda)^2-\frac{\lambda^2}{2}}≥c\frac{\lambda\sqrt{2\pi}}{2}e^{-\frac{\lambda^2}{2}} 2cλ2π e21(uλ)22λ2c2λ2π e2λ2

不妨令 λ = 1 \lambda=1 λ=1 c = 2 2 π e 1 2 c=\frac{2}{\sqrt{2\pi}}e^{\frac{1}{2}} c=2π 2e21
(这么令代入便于计算)
即可以满足 c f Y ( u ) f Z ( u ) ≥ 1 \frac{cf_Y(u)}{f_Z(u)}≥1 fZ(u)cfY(u)1
此时确定可以将 f Y ( u ) f_Y(u) fY(u)作为我们的建议函数(辅助函数)
t ( y ) = c f Y ( y ) t(y)=cf_Y(y) t(y)=cfY(y)
(课件中使用t(x)代表建议函数,故此用t表示)

(3)由(2)已将建议函数 t ( y ) = c f Y ( y ) t(y)=cf_Y(y) t(y)=cfY(y)找好,接下来我们从中进行采样

【第一个是为了得到样本Y】

  • 生成随机变量U1,其服从U(0,1)的均匀分布,从中生成u1,从而获得采样点y
    y = F − 1 ( u 1 ) = − l n ( 1 − u 1 ) y=F^{-1}(u1)=-ln(1-u_1) y=F1(u1)=ln(1u1)(这个可由指数分布的分布函数去进行求逆变换得到)

【第二个是为了得到样本U】

  • 再生成一个随机变量U2,其也服从U(0, 1)的均匀分布,从中得到u2,且随机变量U1和U2相互独立
    if u 1 ≤ f Z ( y ) c f Y ( y ) u1≤\frac{f_Z(y)}{cf_Y(y)} u1cfY(y)fZ(y)
    则该采样点可以取到,(接受)Z=y
    否则就拒绝回到(3)的开始重新进行采样。

(4)综上,我们产生了Z,其满足 Z = ∣ X ∣ Z=|X| Z=X,但我们实际求解的是X

  • 因此,再生成一个随机变量U3,其服从U(0, 1)的均匀分布,从中得到u3,且随机变量U3是独立于U1、U2
    m = { + 1 u3 ≤ 0.5 − 1 u3 > 0.5 m=\begin{cases} +1& \text{u3 ≤ 0.5}\\ -1& \text{u3 > 0.5} \end{cases} m={+11u3 ≤ 0.5u3 > 0.5
    X = m ∗ Z X=m*Z X=mZ即为采样所得服从N(0,1)标准正态分布

方法2:双指数分布生成正态分布

  1. 产生两个相互独立服从参数为1的指数分布的随机变量Y1、Y2
    Y 1 = − l n ( U 1 ) Y1=-ln(U_1) Y1=ln(U1)
    and Y 2 = − l n ( U 2 ) Y2=-ln(U_2) Y2=ln(U2)
  2. Y 2 ≥ ( Y 1 − 1 ) 2 2 Y_2≥\frac{(Y_1-1)^2}{2} Y22(Y11)2时,令 ∣ Z ∣ = Y 1 |Z|=Y_1 Z=Y1否则就回到第一步重新进行采样
  3. 生成随机变量U,其服从均匀分布U(0, 1)
    Z = { ∣ Z ∣ U ≤ 0.5 − ∣ Z ∣ U > 0.5 Z=\begin{cases} |Z|& \text{U ≤ 0.5}\\ -|Z|& \text{U > 0.5} \end{cases} Z={ZZU ≤ 0.5U > 0.5

方法3:

  1. 生成随机变量Y,其服从参数为1的指数分布;生成随机变量U1,并令 Y = − l n ( U 1 ) Y=-ln(U1) Y=ln(U1)
  2. 生成随机变量U2
  3. U 2 ≤ e − ( Y − 1 ) 2 2 U2≤e^{-\frac{(Y-1)^2}{2}} U2e2(Y1)2则令|Z|=Y,否则则回到第一步
  4. 生成U3,若U3≤0.5则Z=|Z|;若U3>0.5,则Z=-|Z|

注意第3步, U 2 ≤ e − ( Y − 1 ) 2 2 U2≤e^{-\frac{(Y-1)^2}{2}} U2e2(Y1)2,可得
− l n ( U 2 ) ≥ ( Y − 1 ) 2 / 2 -ln(U2)≥(Y-1)^2/2 ln(U2)(Y1)2/2
就可以简化 − l n ( U 2 ) -ln(U2) ln(U2)是服从参数为1的指数分布。

使用Acceptance-Rejection method对连续型随机变量有效,证明处处都有 P ( X ≤ x ) = F X ( x ) P(X≤x)=F_X(x) P(Xx)=FX(x)

设,事件A为接受事件,由Acceptance-Rejection method可知,当A发生时,可将采样Y去代替X,即X=Y
左边 = P ( X ≤ x ) = P ( Y ≤ x ∣ A ) = P ( Y ≤ x , A ) P ( A ) 左边=P(X≤x)=P(Y≤x|A)=\frac{P(Y≤x,A)}{P(A)} 左边=P(Xx)=P(YxA)=P(A)P(Yx,A)

对Y进行采样,得到y,可以取Y作为X的概率如下,
P ( A ∣ Y = y ) = P ( U ≤ f ( y ) t ( y ) ) = f ( y ) t ( y ) P(A|Y=y)=P(U≤\frac{f(y)}{t(y)})=\frac{f(y)}{t(y)} P(AY=y)=P(Ut(y)f(y))=t(y)f(y)
t(y)为建议分布的概率密度函数
U服从U(0, 1)的均匀分布,故概率如上。
0 ≤ f ( y ) t ( y ) ≤ 1 0≤\frac{f(y)}{t(y)}≤1 0t(y)f(y)1
f ( y ) ≤ t ( y ) f(y)≤t(y) f(y)t(y)
取r(y)为Y的概率密度函数
P ( A a n d Y ≤ x ) = ∫ − ∞ x P ( A a n d Y ≤ x ∣ Y = y ) r ( y ) d y P(A\ and\ Y ≤ x)=\int_{-\infty}^xP(A\ and\ Y ≤x|Y=y)r(y)dy P(A and Yx)=xP(A and YxY=y)r(y)dy
由区间知Y≤x必然成立,故
P ( A a n d Y ≤ x ) = ∫ − ∞ x P ( A a n d Y ≤ x ∣ Y = y ) r ( y ) d y = ∫ − ∞ x P ( A ∣ Y = y ) r ( y ) d y = ∫ − ∞ x f ( y ) t ( y ) ∗ t ( y ) c d y = 1 c ∫ − ∞ x f ( y ) d y = 1 c F ( x ) P(A\ and\ Y ≤ x)=\int_{-\infty}^xP(A\ and\ Y ≤x|Y=y)r(y)dy\\= \int_{-\infty}^xP(A|Y=y)r(y)dy\\ =\int_{-\infty}^x\frac{f(y)}{t(y)}*\frac{t(y)}{c}dy\\ =\frac{1}{c}\int_{-\infty}^xf(y)dy\\ =\frac{1}{c}F(x) P(A and Yx)=xP(A and YxY=y)r(y)dy=xP(AY=y)r(y)dy=xt(y)f(y)ct(y)dy=c1xf(y)dy=c1F(x)

又因为 P ( A ) = ∫ R P ( A ∣ Y = y ) r ( y ) d y = 1 c ∫ R f ( y ) d y = 1 c P(A)=\int_R P(A|Y=y)r(y)dy\\ =\frac{1}{c}\int_R f(y)dy=\frac{1}{c} P(A)=RP(AY=y)r(y)dy=c1Rf(y)dy=c1 P ( A ) = 1 c P(A)=\frac{1}{c} P(A)=c1

已知, = P ( X ≤ x ) = P ( Y ≤ x ∣ A ) = P ( Y ≤ x , A ) P ( A ) =P(X≤x)=P(Y≤x|A)=\frac{P(Y≤x,A)}{P(A)} =P(Xx)=P(YxA)=P(A)P(Yx,A)
P ( A a n d Y ≤ x ) = 1 c F ( x ) P(A\ and\ Y ≤ x)=\frac{1}{c}F(x) P(A and Yx)=c1F(x)带入
P ( A ) = 1 c P(A)=\frac{1}{c} P(A)=c1带入
解得, P ( X ≤ x ) = F ( x ) P(X≤x)=F(x) P(Xx)=F(x),综上得证。

Empirical distribution 经验分布

经验分布是分段线性不是阶梯式

重点:数据是否已经被分组

Ungrouped data

condition

当原始的数据已知且有具体的值的时候

method

这里我们可以使用插值法。

首先我们得到的是一组未经处理的数据,不妨设有n个

然后,根据数值由小到大对其进行排序,

  • 最小的值到 [ 0 , 1 n − 1 ] [0, \frac{1}{n-1}] [0,n11]
  • 接下来的值放到 [ 1 n − 1 , 2 n − 1 ] [\frac{1}{n-1}, \frac{2}{n-1}] [n11,n12]
  • 继续上述类似操作
  • 最大值分配到1上

这样,每个值都会和一个区间相对应

construction method

定义一个连续的、分段线性的分布函数F
将Xi单调递增排序,Xi表示第i小(Xi就是排序过的数值),此时可以得到F函数如下
{ 0 , if  x < X ( 1 ) i − 1 n + 1 + x − X i ( n − 1 ) ( X ( i + 1 ) − X ( i ) ) , if  X i ≤ x < X ( i + 1 ) ,  ∀ i < n − 1 1 , if  X ( n ) < x \begin{cases} 0& ,\text{if $x<X_{(1)}$}\\ \frac{i-1}{n+1}+\frac{x-X_i}{(n-1)(X_{(i+1)}-X_{(i)})}& ,\text{if $X_i≤x<X_{(i+1)}$, $\forall i<n-1$}\\ 1& ,\text{if $X_{(n)}<x$} \end{cases} 0n+1i1+(n1)(X(i+1)X(i))xXi1,if x<X(1),if Xix<X(i+1), ∀i<n1,if X(n)<x

生成U去寻找x

在这里插入图片描述
在这里插入图片描述

grouped data

condition

我们没有独立的数据样本点的时候,仅知道每组数据间隔中有多少数据,即

  • n j n_j nj个点在区间 [ a j − 1 , a j ] , j = 0 , , , , , k [a_{j-1},a_j],j=0,,,,,k [aj1,aj],j=0,,,,,k
  • ∑ n j = n \sum n_j=n nj=n
  • G ( a j ) = ( n 1 + . . . + n j ) / n , j ≥ 1 , G ( a 0 ) = 0 G(a_j)=(n_1+...+n_j)/n,j≥1,G(a_0)=0 G(aj)=(n1+...+nj)/n,j1,G(a0)=0
  • 分配 a j a_j aj [ G ( a j ) , G ( a j + 1 ) ] [G(a_j), G(a_{j+1})] [G(aj),G(aj+1)],剩下的数据也如上处理
    最后将0值分配给任意x<a0即可

construction method

在这里插入图片描述

example

Suppose we have 5 observations in [3,5), 10 in [5,6), 10 in [6,8), so n = 3

How about discrete empirical distribution?

  • Data Are Not Grouped
    对于数值x,定义p(x)为 值为x的数值个数占所有数值个数的比例
  • Only Grouped Data Are Available
    定义一个概率函数,使得一个区间内所有数值的概率之和为该区间数值个数占所有数值个数之比

经验分布的优点与缺点

优点

  1. 使用当前数据
  2. 易于操作

缺点

  1. 无法得到观察值范围外的数据
  2. 看起来不规则

Maximum Likelihood Estimator 最大似然估计


http://www.ppmy.cn/news/1170159.html

相关文章

VulnHub ch4inrulz: 1.0.1

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏…

ZKP5.2 PLONK IOP

ZKP学习笔记 ZK-Learning MOOC课程笔记 Lecture 5: The Plonk SNARK (Dan Boneh) 5.2 Proving properties of committed polynomials overview Polynomial equality testing with KZG KZG: determined commitment (if the function is equal, then the commitment is equa…

Swift 判断 A B 两个时间是不是同一天,A 是不是 B 的昨天

1. 今天要做这个效果&#xff08;在时间旁边显示今天&#xff0c;昨天&#xff09; 2. Preview 3. Code: // 添加 今天 昨天 func show_today_yesterday(d: Date Date()) -> String {let calendar Calendar.currentlet today: Date Date()if calendar.isDate(today, inS…

【Java】ListIterator

列表迭代器&#xff1a; ListIterator listIterator()&#xff1a;List 集合特有的迭代器该迭代器继承了 Iterator 迭代器&#xff0c;所以&#xff0c;就可以直接使用 hasNext()和next()方法。特有功能&#xff1a; Object previous()&#xff1a;获取上一个元素boolean hasPr…

带你了解如何防御DDoS攻击

DDoS攻击的类型和方法 分布式拒绝服务攻击&#xff08;简称DDoS&#xff09;是一种协同攻击&#xff0c;旨在使受害者的资源无法使用。它可以由一个黑客组织协同行动&#xff0c;也可以借助连接到互联网的多个受破坏设备来执行。这些在攻击者控制下的设备通常称为僵尸网络。 …

Java学习之数据结构知识点

Java学习系列知识点纯干货&#xff1a; 1.Java学习之Java基础部分知识点—>传送门 2.Java学习之Java多线程知识点—>传送门 3.Java学习之数据库知识点—>传送门 4.计算机网络知识点—>传送门 5.Java学习之数据结构知识点—>传送门 6.操作系统知识点学习—>传…

深度学习_3_实战_房价预测

梯度 实战 代码&#xff1a; # %matplotlib inline import random import torch import matplotlib.pyplot as plt # from d21 import torch as d21def synthetic_data(w, b, num_examples):"""生成 Y XW b 噪声。"""X torch.normal(0,…

算法通过村第十五关-超大规模|黄金笔记|超大规模场景

文章目录 前言对20GB文件进行排序超大文本中搜索两个单词的最短距离从10亿数字中寻找小于100万个数字总结 前言 提示&#xff1a;你生命的前半辈子或许属于别人&#xff0c;活在别人的认为里。那把后半辈子还给自己&#xff0c;去追随你内在的声音。 --荣格 理解了前面的几个题…

简单的代码优化(后端)

上一篇谈了谈简单的前端的优化&#xff0c;这次就以下几点谈谈后端的优化。 书写时常见的。 循环里面不要走IO流。 走IO&#xff0c;是要对硬盘进读写操作的。就结论而言&#xff0c;硬盘的读写速度是低于内存的&#xff0c;比如说硬盘上读一次数据&#xff0c;需要1秒&#…

搜索问答技术学习:基于知识图谱+基于搜索和机器阅读理解(MRC)

目录 一、问答系统应用分析 二、搜索问答技术与系统 &#xff08;一&#xff09;需求和信息分析 问答需求类型 多样的数据源 文本组织形态 &#xff08;二&#xff09;主要问答技术介绍 发展和成熟度分析 重点问答技术基础&#xff1a;KBQA和DeepQA KBQA&#xff08;…

使用nginx方向代理部署Vue项目刷新页面404的问题解决

文章目录 问题假设原理探究问题解决 问题假设 部署出现的问题为&#xff1a;由于项目中使用的vue router 项目直接使用node环境部署项目&#xff0c;在同一个路由如: 192.168.1.30:/home刷新浏览器正常 nginx部署刷新不出现404 /nginx not found 如何解决&#xff1f;以下是我…

【数组】移除元素(暴力遍历×双指针√)

一、力扣题目链接 27.移除元素 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 你不需要考虑数组中超出新长度后面的元素。 二、思路 要知道数组的元素在内存地址中是连续的&#xff0c;不…

04、Python 爬取免费小说思路

目录 Python 爬取免费小说思路代码解析爬取东西基本的四行代码:user-agent安装模块从 bs4 导入 BeautifulSoup ,查询某个标签开头的数据筛选遍历获取小说的章节名称每章小说的链接获取请求网址的响应获取小说的内容筛选内容整理内容爬取下载到指定文件夹完整代码:Python 爬取…

2023-10-22

一、总线通信协议简介 总线是计算机系统中负责连接各个硬件的通信线路&#xff0c;它可以传输数据、地址和控制信号。通信协议是指双方实体完成通信所遵循的规则。总线通信协议是一种规定总线设备之间数据通信方式和方法的规则&#xff0c;它包括数据的通信方式、速率、格式、…

当我让文心一言写个代码来庆祝1024程序员节,它写的代码是……

先让它写个自我介绍吧~ 大家好&#xff0c;我是一个人工智能语言模型&#xff0c;我的中文名是文心一言&#xff0c;英文名是ERNIE Bot。我可以协助您完成范围广泛的任务并提供有关各种主题的信息&#xff0c;比如回答问题&#xff0c;提供定义和解释及建议。如果您有任何问题…

电脑技巧:笔记本电脑网络不显示wifi列表解决办法

目录 1.WiFi功能被关闭 2.启用了飞行模式 3.WLAN连接被禁用 4.无线网卡驱动未安装 5.WLAN AutoConfig服务未启动 我的笔记本电脑连接wifi时&#xff0c;结果wifi列表中不显示任何的网络信息&#xff0c;这是怎么回事&#xff1f;要如何解决&#xff1f; 答&#xff1a;笔…

手机知识:安卓内存都卷到24GB了,为何iPhone还在固守8GB

目录 一、系统机制 二、生态差异 三、总结 在刚刚过去的9月&#xff0c;年货iPhone 15系列正式发布&#xff0c;标准版不出意外还是挤药膏&#xff0c;除了镜头、屏幕有些升级&#xff0c;芯片用iPhone 14 Pro系列的&#xff0c;内存只有6GB&#xff1b;即使是集钛合金机身、…

面试官:说说webpack的构建流程?

一、运行流程 webpack 的运行流程是一个串行的过程&#xff0c;它的工作流程就是将各个插件串联起来 在运行过程中会广播事件&#xff0c;插件只需要监听它所关心的事件&#xff0c;就能加入到这条webpack机制中&#xff0c;去改变webpack的运作&#xff0c;使得整个系统扩展…

正规文法、正规式、确定的有穷自动机DFA、不确定的有穷自动机NFA 的概念、区分以及等价性转换【我直接拿下!】

文章目录 正规文法正规式有穷自动机确定的有穷自动机——DFA不确定的有穷自动机——NFADFA 与 NFA 的区分 正规式转换为正规文法正规文法转换为正规式NFA 转换为 DFANFA 最小化 NFA 转换为正规式正规式转换为 NFA正规文法转换为 NFANFA 转换为正规文法 前言&#xff1a; 在学习…

Linux线程--创建及等待

1.进程与线程 典型的UNIX/Linux进程可以看成只有一个控制线程&#xff1a;一个进程在同一时刻只做一件事情。有了多个控制线程后&#xff0c;在程序设计时可以把进程设计成在同一时刻做不止一件事&#xff0c;每个线程各自处理独立的任务。  线程是操作系统能够进行运算调度的…
最新文章