std::initializer_list详解

news/2024/12/13 17:37:46/

std::initializer_list介绍

initializer_list是C++11提供的一种新类型,其定义于头文件<initializer_list>中,此头文件是工具库的一部分,

<initializer_list>定义如下:

namespace std {template<class E> class initializer_list {public:using value_type = E;using reference = const E&;using const_reference = const E&;using size_type = size_t;using iterator = const E*;using const_iterator = const E*;constexpr initializer_list() noexcept;constexpr size_t size() const noexcept; // 元素数量constexpr const E* begin() const noexcept; // 首元素constexpr const E* end() const noexcept; // 末元素后一位置};// initializer_list 范围访问template<class E> constexpr const E* begin(initializer_list<E> il) noexcept;template<class E> constexpr const E* end(initializer_list<E> il) noexcept;
}

 

std::initializer_list 类型对象是一个访问 const T 类型对象数组的轻量代理对象。

std::initializer_list 对象在这些时候自动构造:

  • 用花括号初始化器列表列表初始化一个对象,其中对应构造函数接受一个std::initializer_list 参数
  • 以花括号初始化器列表为赋值的右运算数,或函数调用参数,而对应的赋值运算符/函数接受 std::initializer_list 参数
  • 绑定花括号初始化器列表到 auto ,包括在范围 for 循环中

initializer_list 可由一对指针或指针与其长度实现。复制一个 std::initializer_list 不会复制其底层对象。

底层数组不保证在原始 initializer_list 对象的生存期结束后继续存在。 std::initializer_list 的存储是未指定的(即它可以是自动、临时或静态只读内存,依赖场合)。 (C++14 前)

底层数组是 const T[N] 类型的临时数组,其中每个元素都从原始初始化器列表的对应元素复制初始化(除非窄化转换非法)。底层数组的生存期与任何其他临时对象相同,除了从数组初始化 initializer_list 对象会延长数组的生存期,恰如绑定引用到临时量(有例外,例如对于初始化非静态类成员)。底层数组可以分配在只读内存。 (C++14 起)

若声明了 std::initializer_list 的显式或偏特化则程序为病式。

1.成员类型

成员类型定义
value_typeT
referenceconst T&
const_referenceconst T&
size_typestd_size_t
iteratorconst T*
const_iteratorconst T*

2.成员函数

构造函数

initializer_list() noexcept;(C++11 起) (C++14 前)
constexpr initializer_list() noexcept;(C++14 起)

 

#include <iostream>
#include <initializer_list>
int main(){std::initializer_list<int> empty_list;std::cout << "empty_list.size(): " << empty_list.size() << '\n';// 用列表初始化创建初始化器列表std::initializer_list<int> digits {1, 2, 3, 4, 5};std::cout << "digits.size(): " << digits.size() << '\n';// auto 的特殊规则表示‘ fraction '拥有类型// type std::initializer_list<double>auto fractions = {3.14159, 2.71828};std::cout << "fractions.size(): " << fractions.size() << '\n';
}

 

结果如下:

  • size :返回initializer_list中元素数目
  • begin:返回指向首元素的指针
  • end:返回指向末尾元素后一位置的指针

3.非成员函数

std::begin(std::initializer_list) (C++11)特化 std::begin
std::end(std::initializer_list)(C++11) 定义于头文件特化std::end
rbegin(std::initializer_list) (C++14)特化std::rbegin
rend(std::initializer_list)(C++14)特化std::rend

 

#include <iostream>
#include <vector>
#include <initializer_list>
template <class T>
struct S {std::vector<T> v;S(std::initializer_list<T> l) : v(l) {std::cout << "constructed with a " << l.size() << "-element list\n";}void append(std::initializer_list<T> l) {v.insert(v.end(), l.begin(), l.end());}std::pair<const T*, std::size_t> c_arr() const {return {&v[0], v.size()};  // 在 return 语句中复制列表初始化// 这不使用 std::initializer_list}
};
template <typename T>
void templated_fn(T) {}
int main(){S<int> s = {1, 2, 3, 4, 5}; // 复制初始化s.append({6, 7, 8});      // 函数调用中的列表初始化std::cout << "The vector size is now " << s.c_arr().second << " ints:\n";for (auto n : s.v)std::cout << n << ' ';std::cout << '\n';std::cout << "Range-for over brace-init-list: \n";for (int x : {-1, -2, -3}) // auto 的规则令此带范围 for 工作std::cout << x << ' ';std::cout << '\n';auto al = {10, 11, 12};   // auto 的特殊规则std::cout << "The list bound to auto has size() = " << al.size() << '\n';
//    templated_fn({1, 2, 3}); // 编译错误!“ {1, 2, 3} ”不是表达式,// 它无类型,故 T 无法推导templated_fn<std::initializer_list<int>>({1, 2, 3}); // OKtemplated_fn<std::vector<int>>({1, 2, 3});           // 也 OK
}

结果如下:


http://www.ppmy.cn/news/1133507.html

相关文章

eBPF 的发展历程及工作原理

目录 eBPF 是什么 掌握 eBPF 是不是得先成为内核开发者&#xff1f; eBPF 的发展历程是什么样的? eBPF 是怎么工作的? eBPF 是万能的吗? 小结 eBPF 是什么 eBPF 是什么呢&#xff1f; 从它的全称“扩展的伯克利数据包过滤器 (Extended Berkeley Packet Filter)” 来看…

XShell远程连接Ubuntu

环境 系统&#xff1a;Ubuntu 18.04.6 LTS IP&#xff1a;192.168.1.4 ps:查看ubuntu版本 lsb_release -a 查看ubuntu的ip地址 Ubuntu系统准备工作 root权限 打开ubuntu系统后&#xff0c;打开终端&#xff0c;切换为root权限&#xff1a;su root 如果出现su root认证失…

Spring之IoC

文章目录 一.SpringIoC核心概念1.IOC&#xff08;Inversion of Control&#xff09;控制反转2.DI&#xff08;Dependency Injection&#xff09;依赖注入 二.bean的实例化1.构造方法实例化bean2.静态工厂方法实例化bean 三.Bean的生命周期1.Bean的实例化2.设置属性3.Bean初始化…

第四十一章 持久对象和SQL - Storage

文章目录 第四十一章 持久对象和SQL - StorageStorage存储定义概览持久类使用的Globals注意 第四十一章 持久对象和SQL - Storage Storage 每个持久类定义都包含描述类属性如何映射到实际存储它们的Global的信息。类编译器为类生成此信息&#xff0c;并在修改和重新编译时更新…

OSI体系结构和TCP/IP体系结构

在第一章&#xff08; 计网第一章 &#xff09;的时候&#xff0c;曾经提到过OSI体系结构和TCP/IP体系结构&#xff0c;并对它们进行了简单的对比。这篇博客在其基础上进行更深层次的理解。 一.OSI体系结构&#xff1a; 通信子网&#xff1a; 计算机网络在逻辑功能上可以分为…

【Java 进阶篇】MySQL数据库范式详解

范式是数据库设计中的一种理论方法&#xff0c;旨在通过减少数据冗余来提高数据存储的有效性和完整性。在MySQL数据库中&#xff0c;范式设计是一个重要的概念&#xff0c;它有助于组织和管理数据&#xff0c;确保数据的一致性和可靠性。本文将深入探讨数据库范式&#xff0c;包…

【OpenMV】形状识别 特征点检测 算法的组合使用

目录 形状识别 圆形检测 矩形识别 特征点检测 算法的组合使用 形状识别 圆形 霍夫圆检测算法 通过霍夫变换查找圆&#xff0c;支持openmv3以上 矩形 四元检测算法 识别任意大小任意角度的矩形&#xff0c;四元检测算法对图像的失真&#xff0c;畸变没有要求&#xff0c;畸…

[React] React高阶组件(HOC)

文章目录 1.Hoc介绍2.几种包装强化组件的方式2.1 mixin模式2.2 extends继承模式2.3 HOC模式2.4 自定义hooks模式 3.高阶组件产生初衷4.高阶组件使用和编写结构4.1 装饰器模式和函数包裹模式4.2 嵌套HOC 5.两种不同的高阶组件5.1 正向的属性代理5.2 反向的继承 6.如何编写高阶组…