(二)范数与距离

news/2024/4/21 0:17:16/

本文主要内容如下:

  • 1. 范数的定义
  • 2. 常见的范数举例
  • 3. 范数的等价
  • 4. 距离与度量空间的定义

1. 范数的定义

定义1-1:设 E E E 为向量空间, R \mathbb{R} R 为实数域。若映射
∥ ⋅ ∥ : E → R : x ↦ ∥ x ∥ \begin{equation*} \lVert\cdot\rVert:~E\rightarrow\mathbb{R}:~x\mapsto\lVert{x}\rVert \end{equation*} : ER: xx
∀ x , y ∈ E ; λ ∈ R \forall~x,y\in{E};~\lambda\in\mathbb{R}  x,yE; λR 满足

~~~     1) 正定性: ∥ x ∥ ⩾ 0 ~\lVert{x}\rVert\geqslant0  x0 ,当且仅当 x = 0 x=0 x=0 时取等号;

~~~     2) 正齐次性: ∥ λ x ∥ = ∣ λ ∣ ⋅ ∥ x ∥ ~\lVert{\lambda x}\rVert=\lvert{\lambda}\rvert\cdot\lVert{x}\rVert  λx=λx;

~~~     3) 三角不等式: ∥ x + y ∥ ⩽ ∥ x ∥ + ∥ y ∥ ~\lVert{x+y}\rVert\leqslant\lVert{x}\rVert+\lVert{y}\rVert  x+yx+y;

则将其称为范数,为区分定义在不同向量空间上的范数,也记作 ∥ ⋅ ∥ E \lVert\cdot\rVert_E E,而将 ( E , ∥ ⋅ ∥ ) (E,\lVert{\cdot}\rVert) (E,∥) 称为赋范线性空间

定理1-1:范数 ∥ ⋅ ∥ \lVert{\cdot}\rVert 是一个凸函数,即
∥ λ x + ( 1 − λ ) y ∥ ⩽ λ ∥ x ∥ + ( 1 − λ ) ∥ y ∥ , ∀ x , y ∈ E ; λ ∈ [ 0 , 1 ] \begin{equation} \lVert{\lambda x+(1-\lambda)y}\rVert\leqslant\lambda\lVert{x}\rVert+(1-\lambda)\lVert{y}\rVert ,\qquad\forall~x,y\in{E};~\lambda\in[0,1] \end{equation} λx+(1λ)yλx+(1λ)y, x,yE; λ[0,1]

证明:由范数定义中的三角不等式:
∥ λ x + ( 1 − λ ) y ∥ ⩽ ∥ λ x ∥ + ∥ ( 1 − λ ) y ∥ = ∣ λ ∣ ⋅ ∥ x ∥ + ∣ 1 − λ ∣ ⋅ ∥ y ∥ = λ ∥ x ∥ + ( 1 − λ ) ∥ y ∥ (证毕) \begin{align*} \lVert{\lambda x+(1-\lambda)y}\rVert &\leqslant\lVert{\lambda x}\rVert+\lVert(1-\lambda){y}\rVert \\[3mm] &=|\lambda|\cdot\lVert{x}\rVert+|1-\lambda|\cdot\lVert{y}\rVert \\[3mm] &=\lambda\lVert{x}\rVert+(1-\lambda)\lVert{y}\rVert \qquad\qquad\text{(证毕)} \end{align*} λx+(1λ)yλx+∥(1λ)y=λx+∣1λy=λx+(1λ)y(证毕)

定理1-2:定义在向量空间 E E E 上的范数 ∥ ⋅ ∥ \lVert{\cdot}\rVert 满足不等式:
∣ ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣ ∣ ≤ ∣ ∣ x ± y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ , x , y ∈ E \begin{equation} \big\lvert~||{x}||-||{y}||~\big\rvert\le||{x}\pm{y}||\le||{x}||+||{y}|| ,\qquad x,y\in E \end{equation}  ∣∣x∣∣∣∣y∣∣  ∣∣x±y∣∣∣∣x∣∣+∣∣y∣∣,x,yE

证明:由三角不等式:
{ ∣ ∣ x − y ∣ ∣ + ∣ ∣ y ∣ ∣ ≥ ∣ ∣ x ∣ ∣ ⟹ ∣ ∣ x − y ∣ ∣ ≥ ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣ ∣ ∣ x − y ∣ ∣ + ∣ ∣ x ∣ ∣ = ∣ ∣ y − x ∣ ∣ + ∣ ∣ x ∣ ∣ ≥ ∣ ∣ y ∣ ∣ ⟹ ∣ ∣ x − y ∣ ∣ ≥ ∣ ∣ y ∣ ∣ − ∣ ∣ x ∣ ∣ \begin{cases} ||{x}-{y}||+||{y}||\ge||{x}||\Longrightarrow ||{x}-{y}||\ge||{x}||-||{y}|| \\[5mm] ||{x}-{y}||+||{x}||=||{y}-{x}||+||{x}||\ge||{y}||\Longrightarrow ||{x}-{y}||\ge||{y}||-||{x}|| \end{cases} ∣∣xy∣∣+∣∣y∣∣∣∣x∣∣∣∣xy∣∣∣∣x∣∣∣∣y∣∣∣∣xy∣∣+∣∣x∣∣=∣∣yx∣∣+∣∣x∣∣∣∣y∣∣∣∣xy∣∣∣∣y∣∣∣∣x∣∣故有:
∣ ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣ ∣ ≤ ∣ ∣ x − y ∣ ∣ \begin{equation*} \big\lvert~||{x}||-||{y}||~\big\rvert\le||{x}-{y}|| \end{equation*}  ∣∣x∣∣∣∣y∣∣  ∣∣xy∣∣
∣ ∣ x − y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ − y ∣ ∣ = ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ (证毕) \begin{equation*} ||{x}-{y}||\le||x||+||-y||=||x||+||y||\qquad\text{(证毕)} \end{equation*} ∣∣xy∣∣∣∣x∣∣+∣∣y∣∣=∣∣x∣∣+∣∣y∣∣(证毕)

2. 常见的范数举例

1 1 1:定义在 实数空间 R \mathbb{R} R 上的范数 :
∥ x ∥ = ∣ x ∣ , x ∈ R \lVert{x}\rVert=|x|,\qquad x\in\mathbb{R} x=x,xR容易验证上述定义是满足范数的三点要求的。

2 2 2:定义在 n n n 维 Euclidean 空间 R n \mathbb{R}^n Rn
R n = { x = ( x 1 , x 2 , ⋯ , x n ) ∣ x i ∈ R , 1 = 1 , 2 , ⋯ , n } \begin{equation*} \mathbb{R}^n=\bigg\{x=(x_1,x_2,\cdots,x_n)\bigg|x_i\in\mathbb{R},~1=1,2,\cdots,n\bigg\} \end{equation*} Rn={x=(x1,x2,,xn) xiR, 1=1,2,,n}上的 p p p-范数
∣ ∣ x ∣ ∣ p ≜ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p , x ∈ R n ; p ∈ [ 1 , ∞ ) \begin{equation} ||{x}||_{p}\triangleq\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} ,\qquad x\in\mathbb{R}^n~;~p\in[1,\infty) \end{equation} ∣∣xp(i=1nxip)p1,xRn ; p[1,)
特比地,
{ 1 -范数: ∣ ∣ x ∣ ∣ 1 ≜ ∑ i = 1 n ∣ x i ∣ 2 -范数(欧式范数): ∣ ∣ x ∣ ∣ 2 ≜ ∑ i = 1 n x i 2 ∞ -范数(最大范数): ∣ ∣ x ∣ ∣ ∞ ≜ max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \begin{cases} \text{$1$-范数:} &||{x}||_{1}\triangleq \displaystyle{\sum_{i=1}^n}~|x_i| \\[6mm] \text{$2$-范数(欧式范数):} &||{x}||_{2}\triangleq \sqrt{\displaystyle{\sum_{i=1}^n}~x_i^2}\\[6mm] \text{$\infty$-范数(最大范数):}&||{x}||_{\infty}\triangleq \max\limits_{1\le i\le n}~|x_i| \end{cases} 1-范数:2-范数(欧式范数):∞-范数(最大范数):∣∣x1i=1n xi∣∣x2i=1n xi2 ∣∣x1inmax xi

证明:先验证上述“范数”的定义满足范数的三点要求 :

1) 正定性 :
∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ≥ 0 ||{x}||_{p}=\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\ge0 ∣∣xp=(i=1nxip)p10上述不等式取等号时,当且仅当
∣ x i ∣ = 0 ( i = 1 , 2 , … , n ) ⟺ x = 0 |x_i|=0\ (i=1,2,\dots,n)\Longleftrightarrow {x}=0 xi=0 (i=1,2,,n)x=0 2)正齐次性 :
∣ ∣ λ x ∣ ∣ p = ( ∑ i = 1 n ( ∣ λ ∣ ⋅ ∣ x i ∣ ) p ) 1 p = ∣ λ ∣ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = ∣ λ ∣ ⋅ ∣ ∣ x ∣ ∣ p ||\lambda{x}||_{p}=\left(\sum_{i=1}^n (|\lambda|\cdot|x_i|)^p\right)^{\frac{1}{p}}=|\lambda|\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}=|\lambda|\cdot||{x}||_{p} ∣∣λxp=(i=1n(λxi)p)p1=λ(i=1nxip)p1=λ∣∣xp3)三角不等式:
∑ i = 1 n ∣ x i + y i ∣ p = ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ x i + y i ∣ ≤ ∑ i = 1 n ∣ x i + y i ∣ p − 1 ( ∣ x i ∣ + ∣ y i ∣ ) = ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ x i ∣ + ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ y i ∣ ≤ [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ( p q = p q − q ; p , q > 1 ) = [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q = [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 q \begin{aligned} & \quad\sum_{i=1}^n |x_i+y_i|^p \\\\ & =\sum_{i=1}^n |x_i+y_i|^{p-1}|x_i+y_i| \\\\ & \le\sum_{i=1}^n |x_i+y_i|^{p-1}(|x_i|+|y_i|) \\\\ & =\sum_{i=1}^n |x_i+y_i|^{p-1}|x_i|+\sum_{i=1}^n |x_i+y_i|^{p-1}|y_i| \\\\ & \le\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}}\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}} (pq=pq-q;p,q>1) \\\\ & =\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right]\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}} \\\\ & =\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right]\left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{q}} \end{aligned} i=1nxi+yip=i=1nxi+yip1xi+yii=1nxi+yip1(xi+yi)=i=1nxi+yip1xi+i=1nxi+yip1yi[i=1nxi+yiq(p1)]q1(i=1nxip)p1+[i=1nxi+yiq(p1)]q1(i=1nyip)p1(pq=pqq;p,q>1)= (i=1nxip)p1+(i=1nyip)p1 [i=1nxi+yiq(p1)]q1= (i=1nxip)p1+(i=1nyip)p1 [i=1nxi+yip]q1上述证明过程前后应用了绝对值不等式与Holder不等式,进一步:
[ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 − 1 q = [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 p ≤ [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] ( p > 1 ) \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{1-\frac{1}{q}} =\left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{p}} \le\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right](p>1) [i=1nxi+yip]1q1=[i=1nxi+yip]p1 (i=1nxip)p1+(i=1nyip)p1 (p>1) p = 1 p=1 p=1 时由绝对不等式知上述不等式同样成立,综上得证Minkowski不等式(闵可夫斯基不等式)
[ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 p ≤ [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] ( p ≥ 1 ) \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{p}} \le\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right](p\ge1) [i=1nxi+yip]p1 (i=1nxip)p1+(i=1nyip)p1 p1即,
∣ ∣ x + y ∣ ∣ p ≤ ∣ ∣ x ∣ ∣ p + ∣ ∣ y ∣ ∣ p ||{x}+{y}||_p\le||{x}||_p+||{y}||_p ∣∣x+yp∣∣xp+∣∣yp 最后说明,当 p → ∞ p\rightarrow\infty p 时, p − p- p范数满足最大范数的定义。采用夹逼定理求极限,由于
0 ≤ max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ≤ ∑ i = 1 n ∣ x i ∣ p ≤ n ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) 0\le\max\limits_{1\le i\le n}|x_i|^p \le\sum_{i=1}^n |x_i|^p\le n\left(\max\limits_{1\le i\le n}|x_i|^p\right) 01inmaxxipi=1nxipn(1inmaxxip)
{ lim ⁡ p → ∞ ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ lim ⁡ p → ∞ [ n ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) ] 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ lim ⁡ p → ∞ n 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \begin{cases} \displaystyle{\lim_{p\rightarrow\infty}}\left(\max\limits_{1\le i\le n}|x_i|^p\right)^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i|\\\\ \displaystyle{\lim_{p\rightarrow\infty}}\left[n\left(\max\limits_{1\le i\le n}|x_i|^p\right)\right]^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i|\lim_{p\rightarrow\infty}n^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i| \end{cases} plim(1inmaxxip)p1=1inmaxxiplim[n(1inmaxxip)]p1=1inmaxxiplimnp1=1inmaxxi
∣ ∣ x ∣ ∣ ∞ = lim ⁡ p → ∞ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ (证毕) ||{x}||_{\infty}=\lim_{p\rightarrow\infty}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i| \qquad\qquad\text{(证毕)} ∣∣x=plim(i=1nxip)p1=1inmaxxi(证毕)

3. 范数的等价

定义3-1:设 N ( E ) \mathcal{N}(E) N(E) 为所有定义在向量空间 E E E 上的范数构成的集合,对于 ∥ ⋅ ∥ , ∥ ⋅ ∥ × ∈ N ( E ) \lVert\cdot\rVert,~\lVert\cdot\rVert^\times\in\mathcal{N}(E) , ×N(E),若
∃ α , β ∈ R + , s . t . α ∥ x ∥ × ⩽ ∥ x ∥ ⩽ β ∥ x ∥ × , f o r ∀ x ∈ E \begin{equation*} \exist~\alpha,\beta\in\mathbb{R}^+,~s.t.~ \alpha\lVert{x}\rVert^\times \leqslant \lVert{x}\rVert \leqslant \beta\lVert{x}\rVert^\times ,~for~\forall~x\in{E} \end{equation*}  α,βR+, s.t. αx×xβx×, for  xE则称 范数 ∥ ⋅ ∥ \lVert\cdot\rVert ∥ ⋅ ∥ × \lVert\cdot\rVert^\times ×等价,记作: ∥ ⋅ ∥ ∼ ∥ ⋅ ∥ × \lVert\cdot\rVert\sim\lVert\cdot\rVert^\times ×

定理3-1 :范数的等价具有传递性,即
∣ ∣ x ⃗ ∣ ∼ ∣ ∣ x ⃗ ∣ ∣ × , ∣ ∣ x ⃗ ∣ ∣ ∼ ∣ ∣ x ⃗ ∣ ∣ × × ⟹ ∣ ∣ x ∣ ∣ × ∼ ∣ ∣ x ∣ ∣ × × , ∀ x ∈ E \begin{equation*} ||\vec{x}|\sim||\vec{x}||^\times,~||\vec{x}||\sim||\vec{x}||^{\times\times} \Longrightarrow ||{x}||^\times\sim||{x}||^{\times\times} ,\qquad\forall~{x}\in{E} \end{equation*} ∣∣x ∣∣x ×, ∣∣x ∣∣∣∣x ××∣∣x×∣∣x××, xE

证明:若 ∣ ∣ x ⃗ ∣ ∣ ||\vec{x}|| ∣∣x ∣∣ ∣ ∣ x ⃗ ∣ ∣ × ||\vec{x}||^\times ∣∣x × 等价,且 ∣ ∣ x ⃗ ∣ ∣ ||\vec{x}|| ∣∣x ∣∣ ∣ ∣ x ⃗ ∣ ∣ × × ||\vec{x}||^{\times\times} ∣∣x ×× 等价,则 ∃ c i ∈ R , i = 1 , 2 , 3 , 4 \exist~c_i\in\mathbb{R},~i=1,2,3,4  ciR, i=1,2,3,4 使得 :
{ c 1 ∣ ∣ x ∣ ∣ ≤ ∣ ∣ x ∣ ∣ × ≤ c 2 ∣ ∣ x ∣ ∣ c 3 ∣ ∣ x ⃗ ∣ ∣ × × ≤ ∣ ∣ x ∣ ∣ ≤ c 4 ∣ ∣ x ⃗ ∣ × × , ∀ x ∈ E \begin{cases} \ c_1||{x}||\le||{x}||^\times\le c_2||{x}||\\[4mm] \ c_3||\vec{x}||^{\times\times}\le||{x}||\le c_4||\vec{x}|^{\times\times} ,\qquad\forall~{x}\in{E} \end{cases}  c1∣∣x∣∣∣∣x×c2∣∣x∣∣ c3∣∣x ××∣∣x∣∣c4∣∣x ××, xE那么,
c 1 c 3 ∣ ∣ x ∣ ∣ × × ≤ ∣ ∣ x ∣ ∣ × ≤ c 2 c 4 ∣ ∣ x ⃗ ∣ ∣ × × , ∀ x ∈ E c_1c_3||{x}||^{\times\times}\le||{x}||^\times\le c_2c_4||\vec{x}||^{\times\times} ,\qquad\forall~{x}\in{E} c1c3∣∣x××∣∣x×c2c4∣∣x ××, xE ∣ ∣ x ∣ ∣ × ||{x}||^\times ∣∣x× ∣ ∣ x ∣ ∣ × × ||{x}||^{\times\times} ∣∣x××等价。

定理3-2:定义在 R n \mathbb{R}^n Rn 上的 1 − 1- 1范数、 2 − 2- 2范数、 ∞ − \infty- 范数间满足:
∥ x ∥ ∞ ⩽ ∥ x ∥ 2 ⩽ ∥ x ∥ 1 ⩽ n ∥ x ∥ ∞ , ∀ x ∈ R n \begin{equation} \lVert{x}\rVert_\infty \leqslant \lVert{x}\rVert_2 \leqslant \lVert{x}\rVert_1 \leqslant n\lVert{x}\rVert_\infty ,~\forall~x\in\mathbb{R}^n \end{equation} xx2x1nx,  xRn
∥ x ∥ 1 ∼ ∥ x ∥ 2 ∼ ∥ x ∥ ∞ \lVert{x}\rVert_1\sim\lVert{x}\rVert_2\sim\lVert{x}\rVert_\infty x1x2x

证明:显然
max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ≤ ∑ i = 1 n ∣ x i ∣ ≤ n ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ) ⟹ ∥ x ∥ ∞ ⩽ ∥ x ∥ 1 ⩽ n ∥ x ∥ ∞ \max\limits_{1\le i\le n}|x_i| \le\sum_{i=1}^n |x_i|\le n\left(\max\limits_{1\le i\le n}|x_i|\right) \Longrightarrow \lVert{x}\rVert_\infty\leqslant\lVert{x}\rVert_1\leqslant n\lVert{x}\rVert_\infty 1inmaxxii=1nxin(1inmaxxi)xx1nx
x 1 2 + x 2 2 + ⋯ + x N 2 ⩾ ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ) 2 = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ⟹ ∥ x ∥ ∞ ⩽ ∥ x ∥ 2 \sqrt{x_1^2+x_2^2+\dots+x_N^2}\geqslant\sqrt{\left(\max\limits_{1\le i\le n}|x_i| \right)^2}=\max\limits_{1\le i\le n}|x_i| \Longrightarrow \lVert{x}\rVert_\infty\leqslant\lVert{x}\rVert_2 x12+x22++xN2 (1inmaxxi)2 =1inmaxxixx2且根据 Cauchy-Bunjakovski 不等式(Cauchy–Schwarz 不等式)可得
x 1 2 + x 2 2 + ⋯ + x N 2 ≤ ( ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x N ∣ ) 2 ⟹ ∣ ∣ x ∣ ∣ 2 ⩽ ∣ ∣ x ∣ ∣ 1 (证毕) x_1^2+x_2^2+\dots+x_N^2\le(|x_1|+|x_2|+\dots+|x_N|)^2 \Longrightarrow ||{x}||_2\leqslant||{x}||_1 \qquad\text{(证毕)} x12+x22++xN2(x1+x2++xN)2∣∣x2∣∣x1(证毕)

4. 距离与度量空间的定义

定义4-1:设 S S S 是非空集合(不一定是向量空间),若映射
d : S × S → R : ( x , y ) ↦ d ( x , y ) \begin{equation*} d:~S\times S\rightarrow\mathbb{R}:~(x,y)\mapsto{d(x,y)} \end{equation*} d: S×SR: (x,y)d(x,y)满足:

~~~     1) 正定性: d ( x , y ) ⩾ 0 ~d(x,y)\geqslant0  d(x,y)0 ,当且仅当 x = y x=y x=y 时取等号;

~~~     2) 对称性: d ( x , y ) = d ( y , x ) ~d(x,y)=d(y,x)  d(x,y)=d(y,x);

~~~     3) 三点不等式: d ( x , y ) ⩽ d ( x , z ) + d ( z , y ) ~d(x,y)\leqslant d(x,z)+d(z,y)  d(x,y)d(x,z)+d(z,y).

d ( x , y ) d(x,y) d(x,y) x x x y y y 的距离,并 ( S , d ) (S,d) (S,d) 称为度量空间

定理4-1:对于赋范向量空间 ( E , ∥ ⋅ ∥ ) (E,\lVert\cdot\rVert) (E,∥),若取
d ( x , y ) ≜ ∥ x − y ∥ , ∀ x , y ∈ E \begin{equation} d(x,y)\triangleq\lVert{x-y}\rVert,\qquad\forall~x,y\in{E} \end{equation} d(x,y)xy, x,yE则在向量空间 E E E 上定义了距离 d ( x , y ) d(x,y) d(x,y),即赋范线性空间可视为度量空间,并将上式定义的 d ( x , y ) d(x,y) d(x,y) 称为由范数 ∥ ⋅ ∥ \lVert\cdot\rVert 导出的距离。由范数 ∥ ⋅ ∥ \lVert\cdot\rVert 导出的距离 d ( x , y ) d(x,y) d(x,y) 满足:
{ d ( x − y , 0 ) = ∣ ∣ ( x − y ) − 0 ∣ ∣ = ∣ ∣ x − y ∣ ∣ = d ( x , y ) d ( λ x , 0 ) = ∣ ∣ λ x − 0 ∣ ∣ = ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ⋅ ∣ ∣ x − 0 ∣ ∣ = ∣ λ ∣ d ( x , 0 ) ( ∀ x , y ∈ E ; λ ∈ R ) \begin{cases} d(x-y,0)=||(x-y)-0||=||x-y||=d(x,y)\\[4mm] d(\lambda x,0)=||\lambda x-0||=||\lambda x||=|\lambda|\cdot||x-0||=|\lambda|~d(x,0) \quad(~\forall~x,y\in E;~\lambda\in\mathbb{R}) \end{cases} d(xy,0)=∣∣(xy)0∣∣=∣∣xy∣∣=d(x,y)d(λx,0)=∣∣λx0∣∣=∣∣λx∣∣=λ∣∣x0∣∣=λ d(x,0)(  x,yE; λR)

证明:验证给出的距离取法是否满足距离的定义 ,对 ∀ x , y , z ∈ E \forall~x,y,z\in{E}  x,y,zE

1)正定性: d ( x , y ) = ∣ ∣ x − y ∣ ∣ ≥ 0 , (当且仅当  x − y = 0 ⟹ x = y 时取等号) \begin{equation*} d(x,y)=||x-y||\ge0,\quad\text{(当且仅当 $x-y=0\Longrightarrow x=y$ 时取等号)} \end{equation*} d(x,y)=∣∣xy∣∣0,(当且仅当 xy=0x=y 时取等号)2)对称性: d ( x , y ) = ∣ ∣ x − y ∣ ∣ = ∣ ∣ − ( y − x ) ∣ ∣ = ∣ ∣ y − x ∣ ∣ = d ( y , x ) \begin{equation*} d(x,y)=||x-y||=||-(y-x)||=||y-x||=d(y,x) \end{equation*} d(x,y)=∣∣xy∣∣=∣∣(yx)∣∣=∣∣yx∣∣=d(y,x)3)三点不等式: d ( x , z ) + d ( z , y ) = ∣ ∣ x − z ∣ ∣ + ∣ ∣ z − y ∣ ∣ ≥ ∣ ∣ ( x − z ) + ( z − y ) ∣ ∣ = ∣ ∣ x − y ∣ ∣ = d ( x , y ) (证毕) \begin{equation*} d(x,z)+d(z,y)=||x-z||+||z-y||\ge||(x-z)+(z-y)||=||x-y||=d(x,y) \qquad\text{(证毕)} \end{equation*} d(x,z)+d(z,y)=∣∣xz∣∣+∣∣zy∣∣∣∣(xz)+(zy)∣∣=∣∣xy∣∣=d(x,y)(证毕)

定理4-2:设 ( S , d ) (S,d) (S,d) 为定义了距离的线性空间,若距离 d d d 满足:
{ d ( x − y , 0 ) = d ( x , y ) d ( λ x , 0 ) = ∣ λ ∣ d ( x , 0 ) ( ∀ x , y ∈ S ; λ ∈ R ) \begin{cases} d(x-y,0)=d(x,y)\\[4mm] d(\lambda x,0)=|\lambda|~d(x,0) \quad(~\forall~x,y\in S;~\lambda\in\mathbb{R}) \end{cases} d(xy,0)=d(x,y)d(λx,0)=λ d(x,0)(  x,yS; λR)则可以取
∣ ∣ x ∣ ∣ ≜ d ( x , 0 ) , x ∈ S \begin{equation*} ||x||\triangleq d(x,0),\qquad x\in S \end{equation*} ∣∣x∣∣d(x,0),xS使得定义出的 ∥ ⋅ ∥ \lVert\cdot\rVert 为范数,并且使得 d d d 是由 ∥ ⋅ ∥ \lVert\cdot\rVert 导出的距离。

证明:验证给出的范数取法是否满足范数的定义 ,对 ∀ x , y ∈ S , λ ∈ R \forall~x,y\in{S},~\lambda\in\mathbb{R}  x,yS, λR

1)正定性: ∣ ∣ x ∣ ∣ = d ( x , 0 ) ≥ 0 , (当且仅当  x = 0 时取等号) \begin{equation*} ||x||=d(x,0)\ge0,\quad\text{(当且仅当 $x=0$ 时取等号)} \end{equation*} ∣∣x∣∣=d(x,0)0,(当且仅当 x=时取等号)2)正齐次性: ∣ ∣ λ x ∣ ∣ = d ( λ x , 0 ) = ∣ λ ∣ d ( x , 0 ) = ∣ λ ∣ ⋅ ∣ ∣ x ∣ ∣ \begin{equation*} ||\lambda x||=d(\lambda x,0)=|\lambda|~d(x,0)=|\lambda|\cdot||x|| \end{equation*} ∣∣λx∣∣=d(λx,0)=λ d(x,0)=λ∣∣x∣∣3)三角不等式: ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ = d ( x , 0 ) + d ( y , 0 ) = d ( x , 0 ) + d ( − y , 0 ) = d ( x , 0 ) + d ( 0 , − y ) ≥ d ( x , − y ) = d ( x + y , 0 ) = ∣ ∣ x + y ∣ ∣ \begin{align*} ||x||+||y||&=d(x,0)+d(y,0)=d(x,0)+d(-y,0) \\[3mm] &=d(x,0)+d(0,-y)\ge d(x,-y)=d(x+y,0)=||x+y|| \end{align*} ∣∣x∣∣+∣∣y∣∣=d(x,0)+d(y,0)=d(x,0)+d(y,0)=d(x,0)+d(0,y)d(x,y)=d(x+y,0)=∣∣x+y∣∣故所取的范数形式满足范数的定义,即 S S S 可视为赋范线性空间。最后说明 d d d 是由 ∥ ⋅ ∥ \lVert\cdot\rVert 导出的距离:
∀ x , y ∈ S , d ( x , y ) = ∣ ∣ x − y ∣ ∣ = d ( x − y , 0 ) (证毕) \forall~x,y\in{S},\qquad d(x,y)=||x-y||=d(x-y,0)\qquad\text{(证毕)}  x,yS,d(x,y)=∣∣xy∣∣=d(xy,0)(证毕)

结合上述两条定理,可得如下包含关系

向量空间的包含关系


http://www.ppmy.cn/news/1074146.html

相关文章

【LeetCode题目详解】第八章 贪心算法 part06 738.单调递增的数字 968.监控二叉树 (day37补)

本文章代码以c为例&#xff01; 一、力扣第738题&#xff1a;单调递增的数字 题目&#xff1a; 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数…

怎样做一个知识库网站

经济和信息技术的蓬勃发展&#xff0c;知识资源成为了企业非常重要的无形资产。 当前&#xff0c;企业的核心竞争力不仅取决于硬件设备、财务实力、资源多寡、人员数量等生产因素&#xff0c;更加取决于企业对于知识的掌握、运用、传承和创新。 制作企业知识库&#xff0c;传…

MyBatisx代码生成

MyBatisx代码生成 1.创建数据库表 CREATE TABLE sys_good (good_id int(11) NOT NULL,good_name varchar(255) COLLATE utf8mb4_general_ci DEFAULT NULL,good_desc varchar(255) COLLATE utf8mb4_general_ci DEFAULT NULL,PRIMARY KEY (good_id) ) ENGINEInnoDB DEFAULT CHA…

10.Redis数据结构之跳表

sortedSet sortedSet是Redis提供的一个非常特别的数据结构&#xff0c;常用作排行榜等功能&#xff0c;将用户id作为value&#xff0c;关注时间或者分数作为score进行排序。 与其他数据结构相似&#xff0c;zset也有两种不同的实现&#xff0c;分别是zipList和(hashskipList)。…

BFT最前线|AI透过胸片估测患者年龄,可揭示其患慢性病风险;中信建投:国产人形机器人核心零部件成本下行值得期待

文 | BFT机器人 AI视界 TECHNOLOGY NEWS 看点1 AI模拟芯片能效达传统芯片14倍 《自然》23日发表的研究报道了一种能效为传统数字计算机芯片14倍的人工智能&#xff08;AI&#xff09;模拟芯片。这一由IBM研究实验室开发的芯片在语音识别上的效率超过了通用处理器。该技术或能…

【软考】系统集成项目管理工程师(二)信息系统服务管理【2分】

一、信息技术服务标准 1、组成要素 组成要素描述人员提供IT服务所需的人员及其知识、经验和技能要求【正确选人】流程提供IT服务时&#xff0c;合理利用必要的资源&#xff0c;将输入转化为输出的一组相互关联和结构化的活动【正确做事】技术交付满足质量要求的IT服务应使用的…

react native 使用ScrollView实现轮播图效果

废话不多说&#xff0c;直接上代码&#xff08;由于功能比较简单就没必要简述了&#xff09; // 轮播图的业务逻辑 startAutoPlay (data) {// data: 图片的数据列表if (this.scrollViewRef) {this.interval setInterval(() > {const { currentIndex, itemWidth } this.st…

基于MyBatis注解的学生管理程序--mybatis注解开发的练手项目

基于MyBatis注解的学生管理程序 需求&#xff1a;完成基于MyBatis注解的学生管理程序&#xff0c;能够用MyBatis注解实现查询操作、实现修改操作、实现一对多查询 &#xff08;1&#xff09;MyBatis注解开发实现查询操作。根据表1和表2在数据库分别创建一个学生表tb_student和…

数据结构——C语言实现单向循环链表

//循环单链表 #include <stdio.h> #include <stdlib.h> #include <math.h>#define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0typedef int Status; typedef int ElemType; typedef struct Node{ElemType data;struct Node *next; }Node;//定义Lin…

服务器日志出现大量NTLM(NT LAN Manager)攻击

日志名称:Security 来源: Microsoft-Windows-Security-Auditing 日期: 2023/8/30 20:57:40 事件 ID:4625 任务类别:登录 级别: 信息 关键字: 审核失败 用户: 暂缺 计算机: WIN-QBJ3ORTR0CF 描述: 帐户登录失败。 主题: 安全 ID:NULL SID 帐户名:- 帐户域:- …

Http 1.0 1.1 2.0 3.0 版本差别

Http 1.0 发布年份&#xff1a;1996 非官方标准 短链接&#xff1a;每一次请求都对应一次TCP的连接与释放 开销大&#xff1a;每次请求都要TCP的连接与释放队头阻塞&#xff1a;每次请求都必须等上一次请求获得响应之后&#xff0c;才可以发送&#xff1b;效率低下 缓存&…

Spring——Spring读取文件

文章目录 1.通过 value 读取比较简单的配置信息2.通过ConfigurationProperties读取并与 bean 绑定3.通过ConfigurationProperties读取并校验4. PropertySource 读取指定 properties 文件5.题外话:Spring加载配置文件的优先级 很多时候我们需要将一些常用的配置信息比如阿里云os…

Docker 及 Docker Compose 安装指南

Docker 是一个开源的容器化平台&#xff0c;可以帮助我们快速构建、打包和运行应用程序。而 Docker Compose 则是用于管理多个容器应用的工具&#xff0c;可以轻松定义和管理多个容器之间的关系。现在&#xff0c;让我们开始安装过程吧&#xff01; docker 安装 apt安装 sudo…

数字孪生体技术--学习笔记

一.数字孪生体技术概述 数字孪生体技术是跨层级&#xff0c;跨尺度的现实世界和虚拟世界的建立沟通的桥梁&#xff0c;是第四次工业革命的通用目的技术和核心技术体系之一&#xff0c;是支撑万物互联的综合技术系统&#xff0c;是数字经济发展的基础&#xff0c;是未来智能时代…

弯道超车必做好题集锦三(C语言选择题)

前言&#xff1a; 编程想要学的好&#xff0c;刷题少不了&#xff0c;我们不仅要多刷题&#xff0c;还要刷好题&#xff01;为此我开启了一个弯道超车必做好题锦集的系列&#xff0c;每篇大约10题左右。此为第三篇选择题篇&#xff0c;该系列会不定期更新&#xff0c;后续还会…

【图像处理】模板匹配的学习笔记

OpenCV的模板匹配算法 cv.TM_CCOEFFcv.TM_CCOEFF_NORMEDcv.TM_CCORRcv.TM_CCORR_NORMEDcv.TM_SQDIFFcv.TM_SQDIFF_NORMED 匹配代码模板 image cv2.imread(r"scene.png", cv2.IMREAD_GRAYSCALE) template cv2.imread(r"element.png", cv2.IMREAD_GRAYSC…

微信小程序:页面有内容却不显示原因

先检查&#xff0c;app.json中这两项路径是否正确 如果正确的话&#xff0c;不显示的那个页面的。js文件中需要Page({})&#xff0c;初始化&#xff0c;这个必须有&#xff1b; 如果还是不出现&#xff0c;可以先把路径删掉&#xff0c;然后刷新一下&#xff0c;这个时候会提示…

leetcode做题笔记112. 路径总和

给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 叶子节点 是指没有子节点…

Java并发编程的简单理解

目录 文章目录 目录前言概念一、关于高并发大流量二、扩展1、Scale-up2、Scale-out 缓存异步总结 前言 高并发系统的演进应该是循序渐进&#xff0c;以解决系统中存在的问题为目的和驱动力的。 所以并不是所有的并发系统设计都要追求高流量&#xff0c;电商对其淘宝那种,IM对…

为什么JVM调优一般都是针对堆内存的,以及堆内存的设置对GC的影响

1、为什么JVM调优一般都是针对堆内存的&#xff1f; 首先JVM的四部分组成&#xff1a;ClassLoader&#xff08;类装载器&#xff09;、Runtime data area 运行数据区、Execution Engine 执行引擎、Native Interface 本地接口。 其中运行数据区&#xff08;Runtime Data Area&am…