EMO实战:使用EMO实现图像分类任务(一)

news/2025/2/13 21:11:23/

文章目录

  • 摘要
  • 安装包
    • 安装timm
    • 安装 grad-cam
    • 安装einops
  • 数据增强Cutout和Mixup
  • EMA
  • 项目结构
  • 计算mean和std
  • 生成数据集

摘要

论文翻译:https://blog.csdn.net/m0_47867638/article/details/132034098?spm=1001.2014.3001.5501
官方源码:https://github.com/zhangzjn/EMO

EMO是高效、轻量级的模型,以在参数、FLOPs和性能之间实现平衡,适用于密集预测任务。文章从倒立残差块(IRB)和Transformer的有效组件的统一角度出发,将基于CNN的IRB扩展到基于注意力的模型,并抽象出一个用于轻量级模型设计的单残留元移动块(MMB)。

作者提出了反向残差移动块(iRMB),并根据简单而有效的设计准则构建了一个只有iRMB的类ResNet高效模型(EMO)用于下游任务。实验结果表明,EMO在ImageNet-1K、COCO2017和ADE20K基准测试上表现出优异的性能,超过了SOTA的CNN和基于注意力的模型。EMO-1m/2M/5M达到71.5、75.1和78.4 Top-1,同时实现了良好的参数效率与精度权衡,运行速度比iPhone14上的EdgeNeXt快2.8-4.0倍。

EMO为轻量级模型设计提供了一个新的思路,通过将CNN和Transformer的有效组件统一起来,实现了高效的模型性能。大量实验验证了所提出的方法的有效性和优越性,为相关领域的研究提供了有益的参考。总的来说,文章提出的方法在参数效率、性能和计算成本之间实现了良好的平衡,具有广泛的应用前景。

在这里插入图片描述

这篇文章使用EMO完成植物分类任务,模型采用EMO_1M向大家展示如何使用EMO。EMO_1M在这个数据集上实现了96+%的ACC,如下图:

请添加图片描述

请添加图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现EMO模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?
  13. 如果使用Grad-CAM 实现热力图可视化?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

安装 grad-cam

pip install grad-cam

安装einops

pip install einops

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),Cutout(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=12)criterion_train = SoftTargetCrossEntropy()

参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn_logger = logging.getLogger(__name__)class ModelEma:def __init__(self, model, decay=0.9999, device='', resume=''):# make a copy of the model for accumulating moving average of weightsself.ema = deepcopy(model)self.ema.eval()self.decay = decayself.device = device  # perform ema on different device from model if setif device:self.ema.to(device=device)self.ema_has_module = hasattr(self.ema, 'module')if resume:self._load_checkpoint(resume)for p in self.ema.parameters():p.requires_grad_(False)def _load_checkpoint(self, checkpoint_path):checkpoint = torch.load(checkpoint_path, map_location='cpu')assert isinstance(checkpoint, dict)if 'state_dict_ema' in checkpoint:new_state_dict = OrderedDict()for k, v in checkpoint['state_dict_ema'].items():# ema model may have been wrapped by DataParallel, and need module prefixif self.ema_has_module:name = 'module.' + k if not k.startswith('module') else kelse:name = knew_state_dict[name] = vself.ema.load_state_dict(new_state_dict)_logger.info("Loaded state_dict_ema")else:_logger.warning("Failed to find state_dict_ema, starting from loaded model weights")def update(self, model):# correct a mismatch in state dict keysneeds_module = hasattr(model, 'module') and not self.ema_has_modulewith torch.no_grad():msd = model.state_dict()for k, ema_v in self.ema.state_dict().items():if needs_module:k = 'module.' + kmodel_v = msd[k].detach()if self.device:model_v = model_v.to(device=self.device)ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:model_ema = ModelEma(model_ft,decay=model_ema_decay,device='cpu',resume=resume)# 训练过程中,更新完参数后,同步update shadow weights
def train():optimizer.step()if model_ema is not None:model_ema.update(model)# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

EMO_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  ├─__init__.py
│  ├─_emo_ios.py
│  ├─basic_modules.py
│  ├─cls_factory.py
│  └─emo.py
├─mean_std.py
├─makedata.py
├─train.py
├─cam_image.py
└─test.py

models:来源官方代码,对面的代码做了一些适应性修改。
mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
ema.py:EMA脚本
train.py:训练InceptionNext模型
cam_image.py:热力图可视化

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transformsdef get_mean_and_std(train_data):train_loader = torch.utils.data.DataLoader(train_data, batch_size=1, shuffle=False, num_workers=0,pin_memory=True)mean = torch.zeros(3)std = torch.zeros(3)for X, _ in train_loader:for d in range(3):mean[d] += X[:, d, :, :].mean()std[d] += X[:, d, :, :].std()mean.div_(len(train_data))std.div_(len(train_data))return list(mean.numpy()), list(std.numpy())if __name__ == '__main__':train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。


http://www.ppmy.cn/news/1039286.html

相关文章

​LeetCode解法汇总833. 字符串中的查找与替换

目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 描述: 你会得到一…

地毯(暴力+差分两种方法)

题目描述 在 nx n 的格子上有 m 个地毯。 给出这些地毯的信息,问每个点被多少个地毯覆盖。 输入格式 第一行,两个正整数 n,m。意义如题所述。 接下来 m 行,每行两个坐标 (x_1,y_1) 和 (x_2,y_2),代表一块地毯,左上…

Kotlin Lambda和高阶函数

Lambda和高阶函数 本文链接: 文章目录 Lambda和高阶函数 lambda输出(返回类型)深入探究泛型 inline原理探究 高阶函数集合、泛型自己实现Kotlin内置函数 扩展函数原理companion object 原理 > 静态内部类函数式编程 lambda 1、lambda的由…

HJ3 明明的随机数

题目链接 难度:简单 题解: 题目思路:定义一个长度为510的数组来表示输入的每个数字是否出现过。 数组的下标表示输入的数字本身。 数组的值为1,表示已出现。 数组的值为0,表示未出现。 最后顺序遍历数组&#xff0c…

Esp8266学习7. 点亮JMD0.96C-1 OLED屏

Esp8266学习7. 点亮JMD0.96C-1 OLED屏 一、ESP32-C3 I2C资源简介1. 简介2. 准备工作 二、I2C协议简介1. 起始条件(Start Condition):2. 设备地址传输(Device Address Transmission):3. 从设备响应&#xff…

数据结构单链表

单链表 1 链表的概念及结构 概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链 接次序实现的 。 在我们开始讲链表之前,我们是写了顺序表,顺序表就是类似一个数组的东西&#xff0…

手撕单链表

目录 链表的概念和结构 单链表的实现 申请新结点 打印 尾插 头插 尾删 头删 ​编辑 查找 在pos位置前插入元素 在pos位置后插入元素 删除pos位置的元素 删除pos位置之后的位置的元素​编辑 完整代码 SListNode.h SListNode.c 链表的概念和结构 链表是一种物理存储…

C++新经典03--共用体、枚举类型与typedef

共用体 共用体,也叫联合,有时候需要把几种不同类型的变量存放到同一段内存单元,例如,把一个整型变量、一个字符型变量、一个字符数组放在同一个地址开始的内存单元中。这三个变量在内存中占的字节数不同,但它们都从同…